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Chapter 13: Strategic Choices: An Introduction to Game Theory 

 

For the most part the analyses of the first century or so of microeconomics attempted to 

analyze choice settings in which an individual’s or organization’s decisions determined the fully 

determined the outcomes of interest.  Consumers determine how much of product X to purchase, and 

their decision fully determines how much they buy.  Firms determine how and how much to produce 

and sell, and, given market prices or the demand curve confronted, that is exactly what happens. They 

produce in the intended manner and sell the intended quantities. An exception to that rule was our 

analysis of duopoly and related Cournot types of markets, where the price was neither exogenous, as it 

is for price takers, nor was it fully controlled by the firm, as it is for price makers. Instead, it was the 

joint outcome of two firms in the duopoly case and more than two firms in the oligopolistic cases. The 

same could be said about fully competitive markets, but in those cases—the price taking cases—the 

effects of one’s purchase or output decisions on prices are so small that they can be neglected without 

loss. In the other cases in which market prices are jointly determined, firms may be said to make 

strategic decision—decisions that depended partly on expectations they have about other individuals or 

organizations that are not necessarily fully known beforehand.  The prices that arise are no longer fully 

determined by their own choice or exogenous, but jointly determined by a firm or proprietor’s own 

choice and that at least one other proprietor or firm. 

As the effects of market structure (number and sizes of firms) on market prices attracted the 

attention of Economists, what came to be called conjectural variations—beliefs about how one’s rivals 

would respond to their choices—became an integral part of the theory of price determination in such 

markets. By taking such expectations into account, that subarea of economics can be said to have 

invented the field of game theory—although that would be a stronger claim than could be supported, 

because historically there have been numerous settings in which such expectations played a role in 

decision making in noneconomic domains. For example, the battlefield decisions of generals always 

depend partly on their expectations about the future choices that would be made by their rivals. 

However, although, there were relatively few mathematical treatments of those choice settings..  

It was during World War II that game theory emerged as a separate field of study in applied 

mathematics. The book that brought the field to the attention of persons outside the small group of 

applied mathematicians initially working on game theory is the Theory of Games and Economic Behavior by 
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von Neumann and Morgenstern (1944). A second more accessible classic work was published a decade 

later, Games and Decisions by Luce and Raiffa (1957). During the next few decades, the game theoretic 

approach was taken up by a subset of economists, sociologists, political scientists, biologists, and 

military strategists. 

The use of game theory to analyze economic problems continues to be one of the most active 

areas of contemporary microeconomics.  A quick look at any economics journal (and many other social 

science and philosophy journals) in the past two decades will reveal a large number of articles that use 

elementary game theory to analyze economic behavior in a variety of market and institutional settings.  

Although game theory is a relatively new area of specialization, the use of game theory in economics is 

older than game theory itself. For example, the Cournot’s duopoly model (1838) reviewed in chapter 5 

is an early example of a non-cooperative game with a Nash equilibrium.  Stackelberg’s (1934) 

subsequent analysis of duopoly with sequential entry is also game theoretic, as are essentially all models 

of oligopoly and monopolistic competition. Many other applications have been worked out in the past 

half century or so.  

 

Contemporary work on self-enforcing contracts, credible commitments, time inconsistency 

problems, contract renegotiation, externalities, the private production of public goods, and models of 

political and social activity all have used game theoretic models as “engines of analysis.” Most of these 

applications rely upon the rational choice models (utility maximizing or net-benefit maximizing models) 

that we have used throughout this text. Game theory thus belongs in any textbook on 

microeconomics—it can be used to characterize a wide variety of interactions that contribute to the 

size, scope, and routines of market networks. 

As true of neoclassical models, game theory models normally assume that players are "rational" 

in that the selection of strategies can be modeled as utility maximizing or net benefit maximizing 

choices. The strategy choices of all the players in the game jointly determine the payoffs (utilities or net 

benefits) actually received by the players. (Formally, games may be one-sided as in the early neoclassical 

models, but analyses of such choice settings using game theory benefit little from the use of game 

theoretic terminology, models and results.) 

The choice settings modeled using game theory are usually ones in which there are a few 

“players” whose strategy choices jointly determine an outcome and therefore the payoffs realized by all 

the participants in the game of interest.  (Its application in economics have nothing to do with board 
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games, gambling, or card games—although some of the ideas associated with probabilistic settings were 

doubtless first worked out in such informal settings.)  

This chapter provides an introduction to game theory. It begins with some elementary but very 

influential choice settings just a couple of players and strategies and proceeds to settings with more 

strategies and more players.  The illustrating examples are all ones that have influenced developments in 

microeconomic theory and/or its many subfields. The chapter focuses on non-cooperative games in 

“normal form,” all of which can also be characterized using decision trees—but for students interested 

in such characterizations and others, books focused on game theory itself provide better sources than 

can be developed in a single chapter.  A few such books are listed in the references. The appendix 

includes some of the more technical vocabulary of  existence proof for the existence of Nash equilibria 

in very general circumstances.  

Games consist of players, possible strategies, and payoff functions—which are functions that 

characterize the payoffs (usually utilities) realized by the players for all the possible combinations of 

strategy choices. In addition, games specify information sets (often implicitly) that characterize what 

players know about the game and their rivals.  Most economic applications focus on non-cooperative 

games in which the players choose their strategies simultaneously, in which case the other players do 

not know beforehand what the others will do, although they are often assumed to know the strategy 

sets and payoff functions of others in the choice setting of interests. Many of the choice settings that 

economists use game theory to model are presented as “one-shot” contests in which players are 

strangers, the game occurs only once and without linkages to other games. However, repeated games 

are also often of interest, and many have the same equilibria under plausible assumption.  (See the 

appendix for a discussion of sub-game perfect equilibria.)  

I. Two-Person Two-Strategy Games 

The simplest games that allow one to model social interdependence are two-person two-strategy 

one-shot games. A surprising number of insights about markets, firms, cooperation, and the nature of 

competition can be obtained from such simple games. Most students will be familiar with several such 

games, but we’ll nonetheless start out with a bit of review for those students. For students whose 

coursework has neglected all of game theory, the next few sections provide a short introduction to the 

basics of game theory. 

 There are four possible outcomes to a two-player two-strategy one-shot game: 
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 (1) both players may choose strategy S1,  

 (2) both may choose strategy S2  

 (3) player A may choose S1 and player B may choose S2,  

 (4) player A may choose S2 and player B may choose S1.  

The four outcomes can be represented in a “game matrix,” with four cells, each of which corresponds 

to one of the four possible outcomes. The entries in the cells are the payoffs of the two players, usually 

in terms of utility, but other payoffs may be used as well such as profits, output levels, or net benefits.  

In non-cooperative games, each player independently chooses their strategies without knowing 

what the other will do. The outcome of the game is a consequence of those choices and is represented 

in a game matrix as the cell associated with the two strategies chosen, which provides the payoffs 

realized by both players, given the combination of strategies chosen.  

A Trading Game 

The first game to be developed is what might be called the trading game. In that choice setting, 

player A (Alice) may be regarded as the seller, and she decides whether to offer a product for sale or 

not.  Player B (Bob) may be regarded as the buyer, and he determines whether to accept the offer or 

not.  Initially, we’ll assume that if an offer is made and accepted both players are better off.  If an offer 

is not made or not accepted, no trade takes place, and the payoffs are (0,0) for each. No change in their 

initial well-being occurs.  We’ll also assume that there are transactions costs in this choice setting. It is 

costly to make offers and to search for and accept any offers made.  It is the relative size of the payoffs 

numbers that generally determines the strategy choices made by each player. Any series of numbers 

with the same relative magnitudes would generate the same equilibrium outcomes (assuming that a 

higher payoff is always more desirable than a lower payoff—as true of utility functions by definition).  

A Trading Game 
   

Bob 
 

  
 Trade Don't 

 Al 
 

Trade 

(a, b) 
(3, 2) 

(a, b) 
(-1, 0) 

  Don't (0, -1) (0, 0) 
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Alice has apples and Bob has money. Alice is thinking trading some apples for some of Bob's 

money. Bob is thinking about trading money for some of Alice's apples.  Since trade is voluntary, 

nothing happens unless both players agree to trade. However, for the purpose of illustration, it is 

assumed that it costs "one util" make an offer, whether it is taken or not and it costs “one util” to try to 

accept an offer, whether it is made or not. If Al makes and offer and Bob accepts, then their respective 

payoffs are 3 (for Al) and 2 (for Bob). If Al does not make an offer and Bob does not seek one out, 

then nothing happens and the payoff for each is zero.  If Al makes and offer but Bob does not seek one 

out, then Al’s payoff is -1 and Bob’s is zero.  If Bob seeks out an offer but Al does not make one, then 

Bob’s payoff is -1 and Al’s is zero.. 

A non-cooperative game is said be in a Nash Equilibrium whenever a strategy combination is 

“stable” in the sense that no player in the game has an interest in changing his or her strategy, given that 

of the other player or players, because he or she cannot increase his or her payoff by doing so. The 

above trading game has two Nash equilibria, (trade, trade) and (don't, don't). Neither person can 

make themselves better off by changing their strategy (alone) if he or she finds themselves in one or the 

other of these two cells of the game matrix, because of transactions costs.  

Which equilibrium emerges is not clear. If Al has chosen not to offer any apples for sale, then 

Bob should not look for such an offer (0 >-1).  If Al has offered apples for sale, then Bob’s best 

strategy is to accept the offers (2>0). There are mutual gains from trade in this choice setting: (3>0) and 

2>0). Thus, one equilibrium is better than the other, but that does not alter the fact that there are two 

stable outcomes in this choice setting. Some markets never emerge. (Think, for example, of all the 

goods in one’s closet that could have been listed for sale and sold on Craigs List or a similar service, but 

that are not.)  

Adam Smith once said that trade emerged in Great Britain during his time partly because 

individuals and families had propensities to “truck and barter,” which is to say partly because many 

persons enjoyed trading itself—as many persons today enjoy shopping online or in person.  In such 

cases, rather than a negative payoff from making offers not taken or seeking offers not made, Alice and 

Bob would realize a payoff of -1+B, where B is the subjective benefit from shopping.  If B is larger 

than 1, then the mutually beneficial trading outcome would be the unique equilibrium in this form of 

the trading game. In such cases, propensities to truck and barter would enlarge the scope of mutually 

beneficial trade and cause trading networks to be larger than they would otherwise have been. 
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Normative Assessments of Nash Equilibria 

Games are often used to illustrate choice settings that are normatively relevant.  When 

undertaking normative analysis, economists typically use one of two normative theories.  They may use 

the Pareto criteria: An outcome is said to be Pareto optimal (or Pareto efficient) if and only if there is 

no feasible alternative  that would make one person better off without making another worse off. The 

other is the utilitarian norm, which in a game matrix can be used because of the assumption that the 

payoffs are in utility levels. If the utility numbers can be added, then one can use a Benthamite aggregate 

utility function to assess the outcome that emerges as the Nash equilibrium. An outcome is efficient or 

optimal from that utilitarian perspective when it maximizes the sum of the utility levels. 

Note that the trading equilibrium in game above is both Pareto optimal and utilitarian optimal . 

No feasible change (e.g. none of the other three cells) make one person better off without making 

another worse off.  In fact, all the other possibilities make both potential traders worse off. Also, the 

sum of the payoffs (utilities) is maximized at the trading equilibrium.  There are two possible equilibria, 

but one is normatively more appealing than the other. 

 The Prisoners' Dilemma Game 

The Prisoners' Dilemma game is the most widely used choice setting in social science. This is 

not because social scientists are fascinated by criminals, but because the incentives created by the 

payoffs of the classic prisoner’s dilemma are present in a wide number of socially relevant choice 

settings   

The “original” or “classic” prisoners dilemma game goes something like the following.  Two 

individuals are arrested under suspicion that they took part in a serious crime (murder or grand theft).  

Each is known to be guilty of a minor crime (say shoplifting), but it is not possible to convict either of 

the serious crime unless one or both of them provides evidence about the other’s participation in the 

crime.  The prisoners are separated.  Each is asked to testify against the other, in which case the person 

testifying will receive a somewhat lower punishment and the other will be convicted of the more serious 

crime and so receive a greater punishment than associated with the minor crime they both were arrested 

for.  The payoffs are in utility terms with negative numbers indicating a worsening of their condition 

relative to the status quo before they were arrested. (Some illustrations will use years in jail or the 

magnitude of fines as payoffs, in which case the players would try to minimize the payoff rather than 

maximize it.)  The payoffs are again listed as (A, B). 
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The Prisoner’s Dilemma 
 

 Prisoner B 

  Testify Don't 

Prisoner A Testify (-9 , -9) (0, -10) 

 Don't (-10, 0) (-1,-1) 
 

Each prisoner is promised a one-year  reduction in penalty if he or she testifies against the other. In this 

case, as normally structured, there is single Nash equilibrium where they both testify against each other, 

and both receive a modest reduction in their consequently much larger penalties. Of course, both would 

have been better off if neither had testified against the other, but the incentives of their choice setting 

induce each to testify against the other.  

To see this, consider the payoffs of Prisoner A.  If Prisoner A thinks the Prisoner B will not 

testify, A has a choice between a strategy the yields a payoff of -1 (not testifying) or 0 (testifying). So, A 

is better off testifying. Testifying is A’s best reply in that case.  On the other hand, if A thinks that B 

may testify against him or her, then A has a choice between a strategy that generates -10 (don’t) and one 

the generates -9 (testify). Again, testifying is the better strategy.  Again, testifying is the best reply. A is 

said to have a pure dominant strategy—no matter what the other person does, he/she better off with a 

single unique strategy—namely testify.   

The game is symmetric (the payoffs and strategies are the same for each player for the various 

combinations of choices), and thus the same logic applies for Prisoner B. Testifying is always the best 

reply for each, and thus both prisoners decide to testify, and the result is the upper lefthand cell. (This is 

the intersection of their best-replay functions.) In this type of choice setting, each pursues their self-

interest, but the result is worse for both than if both had cooperated with each other and refused to 

testify against the other.   

This is the dilemma. Although society may be better off (assuming they are both actually guilty 

of the more severe crime), the prisoners are clearly worse off than if they had both kept quiet.  

The prisoner’s dilemma game (PD game) is widely used in economics and other social sciences 

because there are a number of settings in which the payoffs (incentives) resemble those of this choice 

setting. Examples include: 

 i.   Competition between Bertrand (price setting) duopolists. 

 ii.   Decisions to engage in externality generating activities.  (Pollution) 

 iii.   Competition among students for high grades in universities 
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 iv.  Public Good Problems 

 v.   Externality problems 

 vi.   The arms race 

 xi.   The Hobbesian Jungle 

The essence of  a PD game’s dilemma is that the “cooperate, cooperate” solution is preferred 

by each player to the “defect, defect” equilibrium;  but, nonetheless, the “defect, defect” outcome 

emerges from independent decision making, because it is the “best” decision for each player no matter 

what the other player(s) choose to do. This contrasts with independent choices in markets, as in the 

trading game, where independent decision making tends to make the participants better off—or at least 

no worse off than they were originally.   

PD payoffs are normally represented using “ordinal”  utility levels with (3, 3) for the mutual 

cooperative solution and (2, 2) for the mutual defection result. The other payoffs are often represented 

as  (1,4) and (4,1) with the defector receiving 4 and the cooperator 1.  This generates outcomes that are 

analytically similar to those of the class contest.  In order for the “defect, defect” outcome to be a 

unique equilibrium, defecting has to yield a payoff that is a bit higher than the cooperative solution 

regardless of whether the other player cooperates or not.1 

The PD game's main limitations as a model of social dilemmas are its assumptions about the 

number of players (2), the number of strategies (2), the period of play (1 round). It is easier to imagine 

cooperation emerging in small number settings than in large number settings because the choice setting 

may be repeated, and trust may emerge and the payoffs from a series of such games may be such that 

the cooperation makes sense. However, many such choice settings have more than 2 players which 

makes such cooperation less likely.   Many others are also repeated through time, which may allow 

patterns of behavior to emerge. (See the Appendix for a brief discussion of the Folk theorem.)  

Analytically, the number players and repetition do not matter as long as defection remains a 

pure dominant strategy and repetition is finite. In settings in which games are repeated and exit is 

 
1 The PD payoffs can also be represented algebraically using (abstract) payoffs, with (C, C) and (D, D) are the 

payoffs of the mutual cooperation and mutual defection outcomes, respectively. The payoff of a cooperator who suffers 

from defection of the other player is often termed S, for “sucker’s payoff” with T be the “temptation payoff” for defection. 

In a PD game, T>C>D>S. 
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possible, strategies, players that never defect may flourish rather than be continuously played as suckers 

because of the existence of a third strategy, exit. (Congleton and Vanberg, 1992).  

Other "Named 2x2 Games" 

There are also other 2x2 games that have attracted attention and have been widely enough used 

to have been given names.  

 i.   A zero-sum game is a game in which the sum of the payoffs in each cell is always 

zero.  In this game, every advantage realized by a player comes at the expense of other players in 

the game.   

 ii.   Coordination games  are games where the "diagonal" cells (top left or bottom right) 

have the same payoffs( for example, 1,1) which are greater than those in the off diagonal cells, 

(for example, 0,0).  Such games illustrate why it can be useful for conventions to emerge—e.g. a 

norm is followed by both persons. For example, if we all drive on the left side of the road or all 

on the right, we all have higher payoffs than some drive on each side of the road. 

  iii.   Assurance games are similar to coordination games. The off diagonal payoffs for the 

“cooperative” strategies are above those of the off diagonal cells, however the upper left-hand 

“cooperative” cell has a higher value to both players (3, 3) than the lower right-hand "do 

nothing" cell, the original position (2, 2).  Note that the trading game can be regarded as a 

special case of the assurance game.2 

  iv.   Chicken games are contests in which identical strategy choices are disastrous rather 

than beneficial. In Chicken games, the "on-diagonal" strategies are lower than the “off-diagonal 

outcomes” yield higher payoffs.  The classic chicken game involves two drivers driving in the 

dark down a country road, with each driver starting in the same lane. The person that changes 

 
2 Some game theorists have renamed the assurance game a stag hunt game after a setting 
described by Rousseau in his  Discourse on Income Inequality (1755). “If it was a matter of hunting a 

deer, everyone well realized that he must remain faithfully at his post; but if a hare happened to pass within the 
reach of one of them, we cannot doubt that he would have gone off in pursuit of it without scruple and, having 

caught his own prey, he would have cared very little about having caused his companions to lose theirs.” See 
Brian Skyrms' (2001) book on the Stag Hunt for a complete discussion.  (Note that the above 
translation suggests that the Stag Hunt is really a PD game rather than an assurance game, at 
least if the starting point is two hunters at their stag hunting post. In the usual assurance 
game, the better equilibrium is stable, if it emerges.) 
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lane is considered to be a “chicken”.  The off-diagonal payoff of the chicken is lower than that 

of the person who stays in his or her original lane, but normally higher than that received in the 

on-diagonal cells (e.g. the ones with both drivers do the same thing and crash).  The off 

diagonal scores are generally higher, although one person does better than the other as with 

(4,2) and (2,4). 

II. Economic and Political Economy Applications of PD-like Game Matrices 

Game matrix characterizations of two-player games are not limited to symmetric games nor to 

contests where the strategy sets include only two strategies, nor to ones where the strategy sets are 

similar. Extensions to three or more strategies are often useful to explore what might be considered 

intermediate solutions in settings where those are plausible.  Using game matrices for such contests 

often shed light on the properties of contests with continuous strategy sets without the restrictions that 

characterizations of payoff functions often impose.   

The Shirking Dilemma and Team Production 

Although production by teams can be highly efficient, there is a sense in which team production 

is unnatural. Each team member’s effort increases the productivity of other team members, but these 

effects can often usually be ignored by a person who decides to goof off a bit rather than fully devote 

him- or herself to team production as characterized by the team’s rules. Every person on every team has 

private incentives to underprovide his or her services to the team. They are inclined to “shirk” rather 

than “work.” 

To illustrate this dilemma, suppose that a team is organized as a “natural cooperative” and 

shares the output produced equally among team members. Each person participates in the team’s 

activities for eight hours. For purposes of illustration, assume that the team output is two times the total 

effort invested in production (work effort). Suppose, however, that an individual’s effort is 

unobservable to others--such as when a group tries to lift or carry a heavy object, separately searches for 

fruit to harvest and share, or jointly develops a complex computer or phone app. The benefits of leisure 

in contrast to work effort (the absence of productive effort) are realized only by the person(s) shirking.  

The game matrix illustrates the “shirking” dilemma for a two-member team with three possible 

strategies. (Two, is of course the smallest possible team.) The payoffs in the game matrix are net 

benefits measured in output units. They are the sum of each team member’s share of the team’s output 

plus the value of each player’s own leisure. The value of an hour of shirking to the individual benefiting 
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from it is assumed to be equivalent to 1.5 units of the team’s output. Note that this choice setting has a 

single Nash equilibrium at the lower  right-hand corner of Table 3.6. A good deal of shirking takes place 

in equilibrium. 

The Shirking Dilemma of Team Production in Natural 

Cooperatives (hours of effort) 

  Harold 

  8 hours 6 hours  4 hours 

Armen 

 

8 hours 
(A, H) 

16, 16 

(A, H) 

14, 17 

(A, H)  

12, 18 

6 hours 17, 14 15,15 13, 16 

4 hours 18, 12 16, 13 14, 14 

 

That a problem exists is implied by several normative theories, as for the other dilemmas already 

reviewed. There are other feasible outcomes that would make all team members better off. For 

example, both Armen and Harold would benefit if they both diligently worked eight hours each day 

instead of four. To the extent that shared output or shared profits are correlated with utility levels, 

aggregate utility is not maximized. And, to the extent that the output of the team contributes to a 

village’s survival by increasing its material reserves, the shirking dilemma diminishes its likelihood of 

survival in the long run. 

Solving such intra-firm dilemmas is one of the reasons that firms exist. The shirking dilemma 

tends to be larger for larger teams, because there are more persons to monitor and coordinate.) 

  Reciprocal External Cost Problems 

As noted above, a variety of social dilemma problems have payoff structures that create PD-

games like incentives.  One game that is important for the field of public economics is the reciprocal 

externality.  In the two-person version of that choice setting, two individuals are permitted by law to 

engage in an activity that they find profitable or pleasurable, but that activity indirectly imposes costs on 

the other.  Examples, might include barbeques that produce a good deal of smoke, playing loud music 

that accords with the tastes of the one playing it, but not their neighbor’s, and mowing their lawn earlier 

enough or late enough to interfere with their neighbor’s sleep.  Other larger scale varieties include 

congestion on highways and many forms of air pollution.  
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A 3x3 matrix is more appropriate for such external cost problems because often middle solution 

are the ones that are Pareto efficient or maximize the sum of the utilities of the individuals involved, 

rather than all or nothing types of solutions.  The choice setting could be thought as one where Bob 

likes country music and Alice love opera, or simply two barbeques, with more or less smoke and odors 

imposed on their neighbor. 

 A Reciprocal External Cost Game 

 Bob 
  Full Half None 

 
Al 

 
Full 

(A, B) 
2, 2 

(A, B) 
4, 1 

(A, B) 
5, -2 

 Half 1, 4 3, 3 4, -1 
 None -2 , 5 -1, 4 0, 0 

 
 

In matrices larger than a 2x2, it is often useful to underline the best replies, because there are 

often more than one equilibrium.  In the case depicted, there is a pure dominant strategy for each of 

“full.” The Nash Equilibria occur where both player’s payoffs are underlined, which in this case is in the 

upper lefthand corner.  There is unique Nash equilibrium of very loud music or smokey barbeques.   

There is a Pareto superior move from that equilibrium to the cell in the center. (A Pareto 

superior move makes at least one person better off and no one worse off.) The center cell is both 

Pareto optimal and a Benthamite optimum (it maximizes the sum of the utilities realized).  But it is 

unstable, because each is better off with “full” if the other has adopted “medium.” Thus, any neighborly 

agreement might well be broken with the result of the upper lefthand corner.3 

The same matrix can be modified slightly to show how rewards and penalties can be used to 

solve such problems. Assume that the town has adopted a fine for excessive noise or smoke of F 

dollars, which has the effect of reducing the utility associated with the various “full” payoffs by f utils 

(dollars and utils are of course quite different things). We now incorporate the effective penalty f (a 

fine) into the game matrix.  

 

 

 
3 Here is should be noted that external benefit problems also exist in which, instead of “over supply” the problem 

tends to be “under supply.” Game matrices can easily be created to illustrate such problems as well, although the external 

cost problem attracts a good more attention than external benefit dilemmas.  
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 A Possible Solution to the Reciprocal External Cost 

Game  (with f >1) 

 Bob 
  Full Half None 

 
Al 

 
Full 

(A, B) 
2-f, 2-f 

(A, B) 
4-f, U 

(A, B) 
5-f, -2 

 Half 1, 4-f 3, 3 4, -1 
 None -2 , 5-f -1, 4 0, 0 

 

 

Note that a fine that reduces the full payoffs by more than one util is sufficient to solve the problem. 

How large the fine F must be to do so (f>1) is not completely obvious, but it may not be very large. In 

that case, the best replies (underlined) are “medium” for both Alice and Bob, and the new Nash 

equilibrium is the middle (3,3) cell, where the best-reply functions intersect. 

Political Economy Dilemmas 

Although firms, clubs, and governments often adopt policies that reduce or solve various 

dilemmas confronted within those organizations and communities, there are also cases in which the 

decisions of one organization or community to address a problem such as the external cost problems 

impose costs (or benefits) on other organizations or communities. In this section, two illustrating 

examples (both of which have attracted sufficient interest to have been named).   

The “Race to the Bottom.” Suppose that are two communities that are interested in regulating 

some activity within their own territory. Suppose further that regulations in each community affect each 

other's prosperity, with the community with the "weakest" regulations being somewhat more 

prosperous than the community with the stronger community. To simply a bit, assume that there are 

just three types of regulations that can be imposed: weak, medium, and strong regulations. .   Suppose 

also that the joint ideal is medium, medium.”  However, the economic effect of local regulations (as 

business relocated to the less regulated community) implies that each community is a bit better off 

weakening its regulations, given the other's regulation of the activity of interest. 
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The Race to the Bottom Dilemma 
 

Community B's Environmental Regulations 

 weak medium 
strong 

 

A's env regs 
weak 

A,B 
6, 6 

A,B 
8, 4 

A,B 
9, 2 

medium 4, 8 7, 7 8, 5 

strong 2, 9 5, 8 6, 6 

 

Such games have a Nash Equilibrium in Pure strategies that is not necessarily Pareto Efficient. 

Given the numbers used, the middle equilibrium is better for both, but incentives induce both 

communities to weaken their regulations beyond that level. Hence, the so-called  “Race to the Bottom” 

dilemma.  

 However, it is clear that the nature of the contest varies with the payoffs assumed, either the 

(weak, weak) cell or the (strong, strong) cell could also be equilibria according to the assumptions made 

about how their joint payoffs vary with the degree of regulation in the neighboring community. Being 

able to see both the dilemma and the fact that it is not the choices perse that generate the dilemma, but 

rather the economic or political relationships behind those payoffs that determine this is one of the 

advantages of using discrete strategy sets and small numbers of players to illustrate dilemmas. 

Continuous versions of the same contest would make the assumptions a bit less obvious. 

However, if we take the numbers in the matrix as reasonable for the problem confronted by the 

two communities, it is important to note that solutions are not as easy as they look. For example, a 

voluntary agreement to move to (medium, medium)—as with a treaty—may not solve the dilemma 

because it is not a Nash equilibrium.  Both governments have incentives to violate such agreements.  

It may be for this reason that international environmental treaties often have little effect on 

international air pollution [See, for example, papers by Murdoch and Sandler (1997)].In a federal system 

of government, the shift of such regulations to a higher level of government might be a solution, but 

such shifts are generally not feasible in international settings. 

“Race to the Top,” also known as NIMBY (not in my back yard). Now suppose that the 

inter-community externality in the opposite direction. Suppose that the community with the weaker 

regulation attracts undesirable (say, noisy, ugly, or polluting industries) into the community which 

induces movement to the community with more stringent regulations. We’ll again assume that there are 

just three levels of regulation and that the two-community ideal is (medium, medium) as in the previous 
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example.  A very minor change in the payoffs can transform the previous game into the NIMBY game.  

In this case, each community is just a bit better off if it has somewhat tougher regulations than its 

neighbor. 

The Race to the Top Dilemma 

Community B's environmental Regulations      

 
 

weak medium strong 

A's env regs 

weak 

A,B 

6, 6 

A,B 

4, 8 

A,B 

2, 9 

medium 8, 4 7, 7 5, 8 

strong 9, 2 8, 5 6, 6 

 

This game also has a Nash Equilibrium with dominant strategies that is not Pareto Optimal. But instead 

of under regulation, over regulation emerges as the solution (and normative problem).  Both are 

conceptually possibilities. 

Notice also that both types of choice settings have clear effects on the production methods 

being undertaken and the extent of the markets in each community.  It is through such effects that the 

regulatory externality problems arise.  Thus, these problems are mere political ones. They are relevant 

for the study of economics—in particular microeconomics. 

III. Games with Continuous Strategy Options   

There are many settings in which players strategies are not discrete, and the continuous nature 

of the strategy sets is an important aspect of the choices made. Modeling settings in which the domain 

of strategies is continuous often yield more convincing and general results that possible with strategy 

sets composed of only a handful of strategies. Moreover, the comparative statics of those equilibria tend 

to be less jumpy and more easily determined than in the discrete cases.  

Such choice settings can be represented mathematically by specifying a payoff (or utility) 

function that characterizes each player's payoffs as a function of the strategy choices of the players in 

the game of interest. Two concrete function form illustrations are developed in this section. 
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The Shirking Dilemma 

The previous section included a 3x3 game matrix representation of the shirking dilemma. That 

dilemma illustrates some of the main features of such dilemmas but is not obviously well-connected to 

the economic theory of wage rates and joint production.  Thus, the first game with continuous 

strategies developed is a continuous version of that choice setting—one that is important for the theory 

of firms, as noted in the discrete example. Solving or ameliorating the shirking dilemma is one of the 

important tasks that all firms undertake.  We’ll again focus on a two-person team and use multiplicative 

exponential functions to characterize both the utility functions of the team members and their effects 

on the team’s output.   

Suppose that Ellen and Fred work in a small business and engage in team production where the 

production function is of the form Q=aWE
bWF

c.  The output is sold in a market at price P and each is 

paid according to their marginal revenue product.  The usual model of wage rates assumes that 

individuals are paid their marginal revenue product for each hour worked—but in this case there is a 

difference between hours on the job and hours worked.  They each spend 8 hours on the job, but they 

are paid for a full day (8 hours). Ellen’s wage rate is wE = P(dQ/dWE) = P (abWE
b-1WF

c) and Fred’s 

income is similarly wF = 8P(dQ/dWF) = P (acWE
bWF

c-1).  Each of the workers is supposed to work 8 

hours, thus Ellen’s income for the day is YE = 8wE= 8P (abWE
b-1WF

c), and Fred’s income for the day is 

YF=8wF=8 P (acWE
bWF

c-1) but each may take part of the workday as leisure without being punished by 

the firm’s management.  

Note that each person’s income varies as the other works more hours, as normally the case for 

team production. Each values leisure and income from their jobs. Notice, that insofar as they are paid 

their marginal revenue product, that neither can work zero hours, because their marginal products 

would fall to zero in that case.  

To simplify a bit, assume that they both Ellen and Fred have similar preferences for work and 

leisure. The utility realized from a day at “work” is Ui=hLi
jYi

k. where Li+Wi = 8. Notice that both the 

amount of leisure and income can be expressed as a function of the time spent actually working while 

on the job.  For Ellen, this is: 

      UE=h(8-WE)j(8P (abWE
b-1WF

c)k      (13.1) 

And for Fred, this is: 

 UF=h(8-WF)
j(8P (acWE

bWF
c-1)k      (13.2) 
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To find out Ellen’s ideal workday—time on the job actually spent working—differentiate equation  13.1 

with respect to WE, set the result equal to zero, and solve for WE.  

 jh(8-WE)j-1[8P (abWE
b-1WF

c]k  + k h(8-WE)j[P (abWE
b-1WF

c]k-1[8Pab(b-1)WE
b-2WF

c] = 0 at WE*   

or 

 jh(8-WE)j-1[8P (abWE
b-1WF

c]k  = k h(8-WE)j[8P (abWE
b-1WF

c]k-1(8Pab(1-b)WE
b-2WF

c)  

(note the negative of 1-b on the right) which simplifies to:  

 j (8P abWE
b-1WF

c)  = k (8-WE) (8Pab(1-b)WE
b-2WF

c)  and then to 

  jWE
  = k (8-WE)(1-b)  = (1-b)kh8 - (1-b) khWE 

or 

jWE+ (1-b) kWE =  (1-b)k8   

Which implies that 

 WE* =  8 [(1-b)k / (j + (1-b) k)]      (13.3) 

This is Ellen’s best-reply function, which indicates that she has a pure dominant strategy. Her best 

workday is not affected by Fred’s choice. If all the exponents were ½, this equation would imply that 

Ellen only works 1/5 of the time that she is “on the job,” which because of the assumed functional 

forms, does not depend on Fred’s effort.  Likewise, Fred would work 

 WF* =  8 [(1-c)k / (j + (1-c) k)]       (13.4) 

Neither pays attention to the fact that as they work less, the wage rate of the other falls and the team’s 

output falls. 

Of course, firms cannot long survive if they pay for work that is not actually being done as in 

this case (unless the team produces an extraordinary amount of output in a short time). It is to avoid 

such problems that firms monitor the productivity of their workforce and incentivize team members to 

work longer hours than most would have worked without the monitoring and incentives schemes 

developed.  

This aspect of the productivity of firms is not well modelled in the neoclassical models of the 

core, although it is one of their core functions. Note that salaries equal to marginal revenue products are 

not by themselves sufficient to solve the problem.   



18 

 

Lottery-Like Contests 

The second contest with continuous strategy functions examined in this section is, like the 

prisoner’s dilemma, a type of contest which is itself not of great relevance for economics—except that it 

has properties that are very similar to other choice settings of great interest. It, like the multiplicative 

exponential functions used throughout the text, also has mathematical properties that generate clear 

results that are intuitively plausible and useful to demonstrate how rivalry in many stochastic and 

reward-sharing environments tends to operate.  

The model developed characterizes the purchase of lottery tickets, where the probability of 

winning some price (or the share received) tends to increase as one purchases more tickets (e.g. engages 

in greater efforts) but falls as one’s rivals purchase more tickets (e.g. engages in greater efforts). 

Lotteries, per se, are not central to the interests of microeconomists, but many choice settings that have 

these two properties exist and are of interest—as with competition in areas of research and 

development, marketing, and efforts to influence governments for favorable regulatory treatment  All 

these are activities that have effects on the extent of trade taking place and the kinds of products 

brought to market and all have properties similar to lotteries in that one cannot be certain that the 

individual, firm, or team that devotes the greatest effort will win the prize..  

Consider, for example, a two-person lottery contest in which each can buy as many tickets as 

they want and each player’s probability of winning depends on the number of tickets owned by that 

player relative to the total sold. Both players are assumed to be risk neutral and thus maximize their 

"expected" net earnings from purchasing tickets.  

Recall that the expected value of an event with outcomes 1, 2, 3, ... N is Ve =  PiVi, where Pi 

is the probability of event i, and Vi is the value of event i. If Al purchases Na lottery tickets and Bob 

purchase Nb tickets, Al's expected profit (Rae) from purchasing lottery tickets is   

Rae = [Na / (Na + Nb) ]Y - Na C        (13.5) 

where Y is the prize one and C is the cost of a lottery ticket. Similarly, Bob's expected net benefit 

(profit)  is Rbe = [Nb / (Na + Nb) ]Y - Nb C..  

Al's expected profit maximizing number of lottery tickets can be found by differentiating 

equation 13.5 with respect to Na and setting the result equal to zero. 

dRae/dNa = {[1 / (Na + Nb) ] - [Na / (Na + Nb)2 ]}Y - C = 0 at Na* (13.6) 

Putting terms over the same denominator and adding C to each side yields: 
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[Na + Nb - Na]/(Na + Nb)2 = C/Y     or     Nb/(Na + Nb)2 = C/Y 

Next we want to solve for Na 

Nb = (Na + Nb)2 C/Y  or Nb(Y/C) = (Na + Nb)2   

which implies that (NbY/C)1/2 = Na + Nb 

thus, Na* = - Nb + (NbY/C)1/2      (13.6) 

Equation 13.6 is sometimes Al’s best-reply function. In this choice setting, it tells Al the expected 

profit maximizing number of lottery tickets to purchase given any particular purchase by Bob.   

Since Na* varies with Bob's purchase, Al does not have a pure dominant strategy in this setting. 

A similar best-reply function can be derived for Bob,  

 Nb* = - Na + (NaY/C)1/2       (13.7) 

The Nash equilibrium occurs when both persons are simultaneously on their best-reply functions. If 

both persons are simultaneously on their best-reply functions, then neither can change their 

strategy and improve their payoff (remember that the best-reply function for player i maximizes his or 

her payoff, given the strategies adopted by all other players), as required for the existence of a Nash 

equilibrium. 

Thus, the Nash equilibrium of this lottery game occurs at a point where:  

  Na* = - Nb* + (Nb*Y/C)1/2  and Nb* = - Na* + (Na*Y/C)1/2 

To find the Na* and Nb* combination where both these conditions hold, one can either substitute the 

equation describing Nb* in terms of Na into the Al's best-reply function and do a bit of algebra. 

In a symmetric game (a game in which players have the same strategy sets and payoff 

functions) there is normally a symmetric equilibrium. In that case, the two best-reply functions will 

intersect at a point where Na = Nb. 

Using this principle allows us to reduce the algebra necessary to solve for the Nash equilibrium 

purchases of lottery tickets. At the symmetric lottery game's equilibrium:  

  Na = - Na + (NaY/C)1/2     

  or 2Na = (NaY/C)1/2 

Squaring both sides, we have: 4Na2 = NaY/C  which implies that 4Na = Y/C 

 Na** = Y/4C          (13.8) 
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and since Na = Nb at the symmetric Nash equilibrium, we also have Nb** = Y/4C 

Since each ticket costs C euros, so Al spends Na** C or Y/4 euros on tickets. That is, Al spends 

exactly 1/4 of the prize money (if he wins) on tickets.  The same is true for Bob, so it is clear that this 

particular lottery will not be a "money maker" for its organizers.  Together Bob and Al spend only half 

the amount promised as a prize.  Nonetheless, a good deal is invested relative to the value of the 

ultimate prize. 

The lottery game can be used to think about a variety of choice settings in which the outcome is 

probabilistic and each persons efforts reduces the probability that the other(s) will win the prize on 

offer—whether that is the profits associated with innovations, lobbying governments for a monopoly 

privilege, investing in lawyers in an important civil law suit, or working hard to maximize one’s grade or 

chance of winning an elective or appointed office.  Within political economy, a topic taken up in part 

III of the book, the most common use of the lottery model is to characterize political rent-seeking 

games, an idea that was originally worked out in Gordon Tullock (1980). 

Generalizing the Lottery Contest to N Players 

  The lottery game and its various applications can also be generalized to take account 

of  more than 2 players, and to include "technologies" where the exponents on investments are 

subject to increasing or decreasing returns. It is surprisingly easy to generalize this game by, for 

example, including N players rather than two.  

Let K represent the total investment of the N-1 players. In that case, then the expected payoff 

of a “typical” player can be written as:   

 Rae = [Na / (Na + K) ]Y - Na C     (13.9) 

Differentiating with respect to Na yields: 

dRae/dNa = {[1 / (Na + K) ] - [Na / (Na +K)2 ]}Y - C = 0 

Solving for Na, as above, yields: 

 Na* = - K + (KY/C)1/2      (13.10) 

This equation is the best-reply function of a typical player in the present N person game, which 

characterizes his or her best response to the total efforts (number of tickets) of the other players.  

To find the symmetric equilibrium, all players purchase the same number of tickets, so  

  K = (N-1) Na**, so: 
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  Na** = - (N-1) + [(N-1)Na** Y/C]1/2 

Solving for Na*, yields: 

 Na** = [(N-1)/ N2] (Y/C)      (13.11) 

Note that when N = 2, as above,  Na** = (1/4) (Y/C) , as before. 

The total expenditure on lottery tickets is NC times this amount, or [(N-1)/N]Y. Total 

expenditures, thus, approaches Y in the limit as N approaches infinity.  

Different technologies for increasing one's chance of winning can also be taken into 

account by assuming changing our assumptions about investments in the game (Na) affect the 

probability of winning the prize. For example, we can take account of economies and diseconomies of 

scale by changing from P =Na/(Na + K), to P = Nad/ ( Nid). 

The payoff function for a typical player now becomes: 

 Rae = [Nad/ ( Nid)]Y - Na C      (13.12) 

Differentiating with respect to Na now yields: 

dRae/dNa = {[dNad-1 / ( Nid) ] - Nad (dNad-1)  / ( Nid)2 }Y - C = 0 

At the symmetric equilibrium, Na** = Ni** for all i = 1, 2, .... N, thus: 

 {[dNad-1 / (a) ] - Nad (dNad-1)  / (2a2) }Y - C = 0 

Putting the numerators over a common denominator and collecting a few terms yields: 

 {[dNNa2d-1 - dNa2d-1)]  / (2a2d) }Y - C = 0,  or 

 {[d (N-1)Na2d-1)]  / (2a2d) }Y - C = 0  

solving for Na*, yields the individual's number of tickets (level of resources invested in the contest) at 

the symmetric Nash equilibrium: 

 Na** = [(N-1)/ N2] (dY/C)      (13.13) 

Note that when d=1 and N=2, as above,  Na** = (1/4) (Y/C) , as before.   

However, the total expenditure on "rent seeking" is again NC times this amount. 

N(Na**) = d[(N-1)/N]Y       (13.14)  

Note that total expenditures will now exceed Y, whenever d(N-1)/N > 1.  

The implications can be summarized as:  
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  i.   The more players are in the game, the less each spends. 

  ii.   However, the total spent rises with the number of players. 

  iii.   In games with constant returns (the classic contest function) the total 

investment in the contest approaches the value of the prize (Y) as the number of 

players approaches infinity. 

  iv.   Contests with increasing returns may have "super dissipation," where 

more resources will be invested in the contest than the prize is worth. 

  v.   (Note that no player will routinely play such games. However, "no one" 

playing is also not an equilibrium, so potential players may play mixed 

participation strategies--more on that later in the course.)   

As mentioned above there are a surprisingly large number of applications of these lottery games.  

Essentially any contest in which one’s own additional resources increases the probability of winning 

while that of one’s rivals reduces the probability of winning can be modeled with such functions. 

Likewise, any contest in which additional resources increases the fraction of the prize that is won, while 

expenditures by one’s rivals reduce one’s share can be modeled in the same way. 

IV. Characterizing Games Using Abstract Payoff Functions 

More general characterizations of games are also possible using abstract functions to 

characterize payoff functions and strategies. For example, the payoff function of a two-person game 

analogous to the lottery cam can be written as  can be represented using abstract functions. 

For example, let the payoff of player A be GA = g(XA, XB)  and that of player B be GB = g(XB, 

XA) where XA is the strategy to be chosen by player A and XB is the strategy chosen by player B.  

 Each player in a non-cooperative game attempts to maximize his payoff, given the strategy 

chosen by the other.  To characterize the payoff maximizing strategy for player A, assume that the 

payoff function is twice differentiable and differentiate A’s payoff function with respect to XB and set 

the result equal to zero.  

XB* has the property that dGA/dXA = dg/dXA = 0    (13.15) 

The implicit function theorem implies that A’s best strategy XA* is a function of the strategy chosen by 

player B,  XA* = x1(X
B).  This is A’s best replay function.  A similar reaction (or best-reply) function can 
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be found for player B.  In a symmetric game, it would simply be: XB* = x1(X
A).  At the Nash 

equilibrium, both reaction curves intersect, so that:  

                                       X1** = x1(X2**) and X2** = x2(X1**)    (13.16) 

Which implies that this Nash equilibrium is the fixed point of the two reaction functions. 

Comparative statics can be undertaken with the implicit function differentiation rules in a 

manner similar to that applied with respect to the market equilibria modeled in chapter 5. 

V. Conclusion 

Applications of game theory in economics tend to focus on relatively small number settings 

where an economically relevant outcome is jointly determined by the individuals, groups, or 

organizations making the decisions that ultimately determine the outcome of interest.  Such settings 

include various duopoly and oligopoly models of markets, relationships between firms and their 

employees and shareholders, innovation contests, and marketing contests—to name just a few of the 

applications that economists have found of interest during the past half century.  Within political 

economy, contests among governments, among interest groups that attempt to influence policy 

decisions, and among politicians and political parties for votes in elections have also attracted 

considerable attention. 

In some cases, game theory allowed previously unnoticed problems to be analyzed and thus 

provided explanations for some of the standing procedures within firms to be better explained—and in 

some cases improved. In others, new light was shed on older questions such as the extent to which 

firms may compete with each other in various market types and with each other for various government 

favors and preferences.   

The over all effect was to enhance our understanding of a large number of relationships within 

markets that were largely ignored by the classic models of market prices. 

 

 

VIII.  A Few Review Problems 

A.  Use a linear version of the Stackelberg model to determine whether the leader or follower has a 
larger market share and profit. 
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B.  Critique the Bertrand model.  Are two firms always sufficient to generate marginal cost pricing?  
Why or why not? 

C.  Use a Cournot-type model to represent a two-person rent-seeking game.  Assume that two 
parties compete for complete control of a market by making campaign contributions to elected 
officials who control the monopoly license.  Suppose that the probability of gaining the 
monopoly privilege, P1 = p(R1, R2), increase with one’s own contribution, R1 ,  but falls with that 
of the other firm's, R2.  

 i.   Characterize the equilibrium level of rent seeking engaged in by two firms who could realize a 

profit of  dollars if they win the monopoly privilege. 

 ii.   How much of the prize is “consumed” (dissipated) by the competitors. 

D.  Discuss why behavior in such games tends to be suboptimal from the point of view of the 
participants and society at large.  Are their cases where rent-seeking efforts do not generate a 
dead weight loss? 

 

Appendix: Some Technical Terms and An Existence Proof 

I. Useful Game Theoretic Terminology 

 

Definition: A normal or strategic form game is given by: (i) a list of players i = 1, ....I; a list of 
strategies Si that player i might employ; (iii) a payoff function which defines the payoffs 
realized by each player under all possible  combinations of strategies. (See Kreps p. 379)  

Strategies may be complex in the sense that they involve a sequence of moves or conditional 
play, or even involve random play. 

Games in normal form are often represented with matrices (as we did above for the Prisoner's 

Dilemma game) or represented mathematically with payoff functions for each player in each possible 

strategic circumstance. (As we did above for the Cournot Duopoly problem)  A sequence of play can be 

represented as a vector of moves. Every game in extensive form can be represented in normal form.  

Definition: A game in extended form is represented as a game tree with (i) a list of players, (ii) 
an assignment of decision nodes to players or to nature, (iii) lists of actions available at each 
decision node, (iv) and a correspondence between immediate successors of each decision 
node and available actions, (v) information sets, (vi) an assignment of PAYOFFs for each 
player at each terminal node (possible ending of the game) (vii) and probability assessments 
over the initial nodes and over the actions at any node that is assigned to nature. (Kreps, p. 
363) 

A game in extensive form represents game play as a sequence of choices made by game players.  

"Simultaneous" choices are represented with restrictions in the information set.  If one player does not 

know what the other chose at the previous "node(s)," then it is as if the whole sequence of decisions is 

made simultaneously by all players. Games in extensive form are convenient ways to represent games 

where a sequence of moves are made (as in chess or checkers) as well as games where information 
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changes in systematic ways as the game unfolds. Any game in Normal form can be represented as a game in 

extensive form. 

Definition: A mixed strategy  is a random strategy.  Suppose that the range of possible actions 
(or sequences of actions) is S.  Then a probability function defined over S is a mixed strategy.  

Note that a mixed strategy does not have to assign non-zero probabilities to all of the possible 

actions that may be taken. One can consider a pure strategy to be a special case of a mixed strategy 

where all the probabilities of actions (or sequences of actions) are zero except for one (the pure 

strategy) which is played with probability of 1.  

In games with no equilibrium in pure strategies,  as in the "even or odd finger game," or 

“paper, scissors, rock” game, most people intuitively use something like a  mixed strategy.  That is, 

they vary their actions without obvious pattern. To be a mixed strategy, the pattern must be 

determined by a particular probability function (chosen by the individual players). 

 

II. Sufficient Conditions for the Existence of   Nash Equilibria in Non-cooperative Games  

A. Proposition.  Every finite player, finite strategy game has at least one Nash equilibrium if we admit mixed 

strategy equilibria as well as pure.  (Kreps p.409 and/or Binmore p.320). 

B. The proof relies upon Kakutani's fixed point theorem, which is a generalization of Browers fixed 

point theorem used in the General Equilibrium existence proof derived above.  Here is a 

condensed version.  (Presented in Kreps, page 409). 

i.  Let i = 1, .... I be the index of players, let Si be the (pure) strategy space for player i and let Σi be 

the space of probabilities distributions on Si.  ii.  The strategy space of mixed strategy profiles is Σ = 

ΠI
i=1 Σi , that is the cross product of all individual mixed strategies. 

iii. For each combination of mixed strategies σ = (σ1, σ2, ...... σi) find each person's best-reply 

function for player i given the other strategies, φi(σ~i) .  

iv. Define  φ = (φ1 φ2 ..... φι) which is vector of best-reply functions. Note that φ is a mapping 

from the domain of mixed strategies onto itself.   

v. It is upper semicontinuous and convex, hence by Kakutani's fixed point theorem a fixed point 

exists.   

vi. This fixed point is a mixed strategy I-tuple which simultaneously characterizes and satisfies each 

player’s best-reply function.  That is it is a Nash equilibrium.  Q. E. D. 

 

vii. A somewhat less general, but more intuitive proof is provided by Binmore in section 

7.7. 

In relatively simple games, it is often possible to compute the Nash equilibrium in mixed 

strategies by adjusting player 1's probabilities to make player 2 indifferent between his or her strategies, 

and player 2's probabilities to make player 1 indifferent between his or her strategies.  In more difficult 

games, like chess with a time constraint, one can prove that an ideal mixed strategy exists but cannot 
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calculate it.  Fortunately, a good many economic games have computable equilibria with pure strategies 

( duopoly, monopolistic competition). 

III. Subgame Perfection 

Definition: A subgame perfect Nash Equilibrium for an extensive game is a Nash 
Equilibrium of the game that, moreover, gives a Nash equilibrium in every proper subgame 
of the game. 

Definition: A proper subgame of an extensive game is a node t and all its successors. 

 

A subgame perfect equilibrium is also an equilibrium for any subgame of the original game. That 

is to say, the choice called for at node "t" at the beginning of the game is the same choice that would 

have been chosen had the game started at node t. Sub-perfect equilibrium, thus implies that a strategy is 

"self-enforcing" in the sense that if such a strategy exists for each player, they will play out the whole 

series of (possibly conditional) moves called for in the strategy (strategic plan). 

Subgame perfection is an important property of self-enforcing contracts and credible commitments. 

Under a self-enforcing contract, each participant has an incentive to abide by all of their contractual 

obligations, even if there are multiple opportunities to renege. This equilibrium concept has been 

applied to insurance problems, to labor markets, political constitutions, and international law (where 

there is no supra-national law enforcing agency). 

It is clear that a strategy which is subgame perfect is a more credible threat than one that is not 

and requires "non-rational behavior." Consequently, equilibria strategy pairs under the folk theorem 

should be subgame perfect if they are to be plausible solutions. One method of inducing particular 

strategies is to post mutual bonds (or hostages) with third parties which are valued by each hostage by 

more than the value of "defecting" rather than "cooperating." In this case, the third party (non-player) 

returns the hostage 1 to party 1 only if party 1 has executed his contractual obligations. The 

hostage/bond method induces cooperation by changing the payoffs of the original game, and it is 

credible as long as the bonding agent benefits from returning the hostages. 

Another method is to assure that each round of the game involves dominant strategies (with 

mutual gains to trade). In this case there is no "hold out" or end-game problem Because it is in each 

person’s interest to perform their “duty” in each period. 

Illustrations of Sub-Game Perfection 

Proposition. Mutual cooperation in a repeated PD game with a known end point is never 

subgame 
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perfect.  

Proof using backward induction.  

(a) In the last round one is in an unrepeated PD game. Consequently, the Nash equilibrium is 

for mutual defection. 

(b) If there is no cooperation in the last round, then one cannot lose future cooperative 

advantage from failing to cooperate in the second to last round. 

(c) Similarly, if both players will not cooperate in the second to last round, there is no risk (of 

retaliation) to defecting in the third to last round and so on. 

(d) "Rational" players will never cooperate in a repeated PD game of finite length with a known 

end point. [This may be good news for markets but not for collective action.] 

Note that this may not be true of finite games with an unknown end point. Why? 

A similar problem is associated with what is called the Centipede Game: a finite length game 

in which each player may choose to stop the game on his turn, in which case he or she “wins” the entire 

score, however he also knows that scores will increase if play continues beyond the other player(s) turn. 

At time T, the game ends.  

Clearly, if any player can do better stopping before time T, he will stop at that earlier time, but 

that implies a "new" shorter game with a similar problem for all. This causes some other player to end 

the game still earlier and so on. Stopping on the first turn winds up being the only subgame perfect 

equilibrium in the standard form of the Centipede Game. 

 

IV. The Folk Theorem 

A. The folk theorem applies to repeated games, especially games that continue forever or have an 

unknown (random) end point.  Essentially the folk theorem says that patterns payoffs an 

equilibrium to the game. 

B. One of many  possible equilibria is cooperation in a repeated PD game.  The intuition is the 

following:  Suppose that in a repeated PD game both players announce that if the other one 

testifies, he will testify against the other in every successive PD game.  This announced strategy, if 

believed, eliminates the "temptation" payoff in the off diagonal cell. The cumulative payoff from 

repeated play now exceeds the one time off-diagonal payoff followed by a long (possibly infinite) 

series of non-cooperative payoffs.  So, under these announced strategies, mutual cooperation is the 

best strategy. 
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C. With a suitable adjustment in probabilities, various equilibria in conditional mixed strategies can be 

found which result in average payoffs a bit higher than the mutual defection payoff up to the 

complete cooperation payoff.  

D. The troubling thing about the folk theorem, is that it allows too many outcomes to be equilibria, so 

it has little predictive value.   It essentially demonstrates that the equilibrium of a sequential game 

depends on the announced conditional strategies of the players in the game, and the creditability 

of those announcements. 

V. A Few Review Problems 

A. Stackelberg Game.  Suppose that Acme and Apex are duopolists who have identical total cost 

functions, C = 100 + 10Q, and "share" the same market (inverse) demand curve: P = 1000 - 

20Q.   

i.    Acme makes its output decision first.  What output should it choose if it knows that Apex 

will simply maximize its own profits given Acme's output? ii.  Is the resulting market 

equilibrium sub-game perfect? Explain.  

iii.  Does the Stackelberg equilibrium differ from the Cournot equilibrium for this pair of 

     firms? Demonstrate and explain. 

B. Continuous Dealings.  Suppose that Al uses George's garage for all car repairs.  Al tells George 

that if he ever believes that he has been cheated by George that he will never return. 

Suppose further that, ex post, cheating can always be determined by Al.  George gains $25.00 each 

time he honestly services Al's car and $50.00 if  he cheats.  If Al leaves before service is obtained 

his payoff is 0.  Al receives $15.00 of consumer surplus if he uses George and $5.00 if he uses 

another garage (known to be honest, but a bit further away and more expensive).  However, if 

George cheats, Al loses $15.00 (of surplus). 

i.            Analyze this as a one-shot game.  Should George cheat Al and/or should Al use 

George? Explain. 

ii. Now consider the setting in which the garage game is to be repeated ad infinitum.  Is the 

game now subgame perfect in non-cheating by George and use of George's by Al? 

Demonstrate and explain.  
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