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Chapter 7: Risk and Market Outcomes 

I. Competition and Profits 

In the choice settings modeled in the first 6 chapters of the book, all the relevant decision 

makers were assumed to have clear overarching goals (utility, net benefits, or profit) and complete 

knowledge about their possibilities and the consequences of their choices. In such settings, no 

mistakes are ever made by rational decisionmakers. Thus, consumers choices always truly maximize 

their utility and firms always exactly maximize their profits.  

Differences among markets and individuals may still exist, but they are not based on 

differences in knowledge or risks. In markets where a large number of firms (and potential firms) 

compete for the purchases of consumers, rates of return across markets tend to converge to the 

same rate.  Any market with above average rates of return attracts entry by both new firms and firms 

previously selling products in other markets. In markets where firms earn below average rates of 

return, firms tend to exit and, to the extent possible, shift their resources to ones earning average or 

above average returns. Thus, in equilibrium rates of return equilibrate across markets.  This is 

sometimes referred to as a “zero profit” equilibrium because firms (and firm owners) are earning 

just their opportunity cost rates of return on their investments (although their net revenues are all 

greater than zero).  

This process is reinforced by the purchasers of goods and services. They purchase their 

goods from suppliers with the lowest price.  This causes firms with above average prices to lose sales 

(in the limit all sales) and encourages such firms to lower prices.  Such pricing pressures tend to 

cause all prices to converge to a single price for each good, one that is equal to each firm’s marginal 

cost of production. (In Marshallian markets this will also equal the firm’s lowest long run average 

cost.) As a consequence, price competition, in turn, induces all the firms in the market to be 

efficient—indeed equally efficient in Marshallian models—and thus all firms use the “best” (least-

cost) production methods and are efficiently sized.  General equilibrium theory, some decades later, 

demonstrated that prices exist that can simultaneously clear all markets, including input markets and 

markets for loans. 
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The context of such “perfect” competition is, of course, not the only one that can exist in 

the real world. A number of deviations form Marshallian competition are possible. First, firms may 

have unique resources—locations, especially talented managers, honest hard-working personnel, or 

better access to particular inputs.  In such cases, what we have termed Ricardian markets tend to 

emerge. In those circumstances, profits may differ among firms and firms may differ in size even in 

settings in which there are many suppliers of the same products.  Second, the demand for various 

attributes of products may differ sufficiently among consumers, and the firms that exist markets for 

particular types of goods may produce similar but not identical goods. In such cases, each firm may 

face its own downward sloping demand curve. Third, there may be various entry barriers that limit 

entry and exit possibilities both for new and existing firms.  These may exist because of patent 

protection, regulations such licensing or paperwork that is costly for new entrants to satisfy, aspects 

of particular locations that limit the number of firms that can be supported, as water in a desert 

tends to limit the number and size of farms that can be supported even when the soil is fertile. 

Limits on entry may also occur because of differences with respect to internalized norms regarding 

innovation and competition. Fourth, there may be sufficient economies of scale (often caused by 

relatively large fixed costs) that only single firm or a very small number of firms can be supported by 

market demand in equilibrium. Fifth, consumers and firms may not know enough to make mistake-

free decisions. Significant ignorance may exist about technological possibilities, the prices available at 

rival sellers, and the profits realized by firms selling in different markets.  Or, the processes that 

generate consequences for firms and consumers may include random or unpredictable factors. 

The first and fifth deviations explain why profitability varies among firms selling identical 

products, even if employees, owners, and consumers are essentially similar beings with similar goals.  

The third variation in circumstances suggests that government policies may be important 

determinants of the extent and efficiency of markets in a given country. The first and fourth were 

addressed to some extent in the second part of chapter 3, where firms were price makers rather than 

price takers. The fourth of these deviations from the circumstances of Marshallian competition 

provides an explanation for variation in market structure or industrial organization across markets. 

Industrial organization is a large, specialized field, and complete coverage of that field is beyond the 

intent of this book, as true of most of the subfields of microeconomics. That the attributes of a 

single family of goods—such as cell phones or automobiles—may vary in ways that matter to 

consumers is addressed in Chapter 15. The third ones—the economic effects of differences in legal, 

regulatory, and cultural environments—are analyzed in Part III of the book. 
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This chapter analyzes with the last of these deviations from the Marshallian circumstances. 

Individuals may simply not know enough to truly maximize profits or utility. Limitations on human 

knowledge occur for many reasons. This chapter focuses on two of these: risks (the existence of 

stochastic phenomena) and uncertainty (the existence of phenomena that are either currently or 

ultimately unpredictable). Other types of information problems are analyzed in chapter 9.  

All these deviations from the Marshallian context affect the scope and density of market 

networks of exchange, production, and innovation—and insofar as rational choice models can be 

used to analyze their effects, they are all parts of the field of microeconomics.  

II. Risk and Uncertainty: Two of the Limitations on Human Knowledge 

This chapter deals with a two types of incomplete knowledge, namely that associated with 

phenomena that are produced via complex chains of causality that are not fully understood and 

others may be generated by well-understood random phenomena.  In both cases, the consequences 

of one’s choices are unpredictable in the sense that the exact outcome of an activity or quality of a 

product cannot be known with certainty before the activity is undertaken or a product is produced 

and purchased.  When one rolls a die (a single dice), one knows that a 1, 2, 3, 4, 5, or 6 will appear 

on top after it stops rolling, but not which number will be wind up on top after the die stops rolling. 

The outcome can be regarded as either the outcome of a complex physical process or as a truly 

random process. 

Statistical theory provides us with several ideas that can be used to describe choice settings in 

which decision makers are less than entirely certain of the consequences of their decisions.  In some 

choice settings, one may be able to describe the consequences with well-known probability 

functions. A probability function maps possible outcomes into the probability that that outcome will 

occur. For example, the outcomes of a single roll of a symmetrical cube is distributed “uniformly” 

with each side of the die being equally likely to be on top after the cube stops rolling. In probabilistic 

settings, one never knows the exact outcome associated with particular actions, although they know 

the average or typical result, as well as the range of possible outcomes.  

The phenomenon that can be described with a probability function are not always truly 

random, in the sense that they are not mechanically caused. However, in many cases, the process 

generating them is sufficiently complex that causal chains are difficult to describe, but nonetheless 

generate outcomes that have the properties of truly stochastic phenomena. The “random” number 
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generators of computers are examples of such phenomena. Computer programmers may know how 

such “random” numbers are generated, but not by many other persons. Probabilistic ideas may also 

be used to describe settings in which causal change are complex, and neither the probabilities nor 

domain of possibilities are completely understood—as a mode of thought for making choices in 

uncertain situations (subjective probabilities). 

Persons are less than perfectly informed in such circumstances, because they do not know 

the precise consequences of their choices or all of the relevant characteristics of their future choice 

settings.  However, there is a sense in which they know as much as can be known.  If the process is 

truly stochastic, then all that can be known about it is its probability function or probability density 

function. The broader the range of random possibilities is, the more important are the stochastic 

aspects of the choice setting and the less certain individuals can be of the outcomes of their choices. 

For example, uniform distributions are bounded between outcome L and outcome H, the lowest 

possible outcome and the highest, whereas normally distributed processes are unbounded. In the 

later cases, it might be said that “anything” can happen, although one can calculate the domain in 

which, for example, 95% of the outcomes will fall.  

Frank Knight argued that economically relevant settings in which one does not understand a 

stochastic phenomenon or a complex causal chain sufficiently to describe it with 1:1 causality or 

with a probability function. In some cases, this might be because of ignorance. In others, it might be 

because the phenomenon itself is so idiosyncratic that it cannot be described with a probability 

distribution.  Such settings, Knight termed “uncertain,” whereas he terms the settings that can be 

characterized with probability functions to be settings of “risk” rather than uncertainty. Knight 

argued that risky choices can be completely modelled and have clear implications, whereas uncertain 

choices cannot be and do not. He also argued that all profits (and losses) realized in Marshallian 

competitive markets arise because of uncertainty rather than risk for reasons that we’ll discuss later 

in this chapter. 

The text is somewhat less careful in our vocabulary in this chapter than Knight was. It uses 

the terms risk and uncertainty more or less interchangeably, and it uses the term Knightian 

uncertainty for what Knight refers to as uncertainty. 
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III. Probability Functions, Expected Values, and Expected Utility 

There are many economically relevant choice settings in which the benefits and costs of 

particular choices (or policies) are at least partly the consequence of random factors that can be 

represented with a probability function.  Fortunately, a modest extension of the rational choice 

model can be used to characterize decisions in choice settings in which a well-understood probability 

function generates factors that are relevant for individual choices. In those circumstances, 

microeconomists normally assume that consumers maximize “expected” utility and firms maximize 

“expected” profits, rather than utility or profits per se.1  

The notion of “expected value,” itself, is an idea taken from statistics and means the 

average result associated with a large series of “draws” from a stable random process of some kind.    

DEF:  Every probability function assigns probabilities to discrete events (here events 1, 2, … 

N) such that the sum of the probabilities is 1.0 and the numbers assigned to particular outcomes 

characterize the relative frequency or likelihood that that possibility occurs.  (The probability that 

something will actually happen is 1, is completely certain, thus one of the possibilities will always 

occur.)  

1 =  ∑ 𝑃𝑖        𝑤𝑖𝑡ℎ 𝑃𝑖 > 0𝑁
𝑖=1           (1) 

All possibilities, i, have positive probabilities of occurrence 1 ≥ Pi > 0. All impossibilities, j, have a 

zero probability of occurring and are not considered parts of a probability function.   

The mathematical expected value is the sum of the values of those possibilities (here V1, V2 

… VN ) times their particular probabilities of occurrence (here P1, P2, … PN). It characterizes the 

large-sample average value of the distribution of the possible values in such samples. 

DEF:  The mathematical expected value of a set of possible outcomes, 1, 2, ... N with values 

V1, V2, ... VN and probabilities of occurrence P1, P2 , ... PN is: 

 
1 Here, it should be acknowledged that this is a larger assumption than the assumption that individuals 
maximize utility.  If individuals have an over-arching goal, they will necessarily try to advance that goal with 
all of their “rational” decisions. Or, if they have an internally consistent preference ordering that ranks all 
relevant possibilities, they will behave in a manner consistent with models that assume that utility is 
maximized.  In contrast, maximizing expected utility is only one of many ways to deal with risky situations.  
Instead, one might, for example, attempt to minimize risk (e.g. attempt to avoid risky situations and attempt 
to reduce the worst case outcome to the least damaging ones in the situations they find themselves) rather 
than attempt to maximize average utility associated with risky choice settings. They might focus on maximum 
likelihood probabilities when making choices rather than averages, as for example when crossing a street, one 
may ignore the probability that a “crazy” driver will come down on them and cause catastrophic losses. How 
one deals with risky settings is itself a choice. The use of average (expected) utility as metric for assessing the 
relative merits of risky choices is simply one of many strategies they may employ. 
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𝐸(𝑉) =  ∑ 𝑃𝑖𝑉𝑖
𝑁
𝑖=1    (2) 

Expected utility is a special case of expected values, namely it characterizes the average utility 

realized when “value” is measured in terms of utility (as utils). The expected utility associated with a 

probabilistic setting is calculated is thus in a similar manner:       

𝐸(𝑈) =  ∑ 𝑃𝑖𝑈(𝑣𝑖)𝑁
𝑖=1    (3) 

where the N possible outcomes (v1, v2, … vN ) are associated with utility levels through an 

individual’s utility function.  To use this formula for expected utility calculations, one has 

to assume that the number of outcomes are finite and countable, that the values are finite, 

and that each outcome has a positive probability associated with it.   

Expected values can also be calculated for random phenomena with a continuous domain. 

In those cases, a probability density function such as f(x) is used for the calculations, rather than a 

probability function. A probability density function is constructed so that the area under that 

function equals 1 and the probability that x takes a value between x’ and x” is the area under that 

function between x’ and x”.  Expected utility such cases is determined using an integral, rather than 

a summation, as with 

 𝐸(𝑈) =  ∫ f(x)U(x)dx
∞

−∞
   (4) 

That a probability function or probability density function is known is not an unreasonable 

assumption in many circumstances, and it is a reasonable first approximation of many others. The 

probabilities assigned may be the result of careful empirical work (frequentist probabilities) or based 

on theoretical reasoning (many natural phenomena are normally distributed, so this one probably is 

as well). Or, it may reflect cumulative learning about the likelihood of particular events that are 

continually updated as more evidence is gathered (Bayesian updating). Such probabilities are 

educated guesses rather than necessarily accurate. This last case is one way to use probabilistic 

choice models to think about choice settings that Knight would regard to be uncertain.  Such 

models, for example, are used in chapter 8 to characterize a subset of entrepreneurial choices.  

Most economists are quite willing to assume that circumstances exist where all the possible 

outcomes are known, probabilities can be assigned to them, and that the possibilities are countable 

or be modelled as countable.  However, as noted above, there are also statistical tools for dealing 

with probabilistic phenomena whose outcomes are not countable. Nonetheless, in the probabilistic 
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choice settings that are relevant for economics, the probabilities are themselves are usually individual 

estimates that are updated as research, policies, or persuasive campaigns take place, rather than 

precisely known by the individuals and organizations.  

The assumption that probability or probability density functions are known allows models to 

be constructed that provide numerous useful insights into how probabilities affect the choices made.  

Illustration of the Difference Between Expected Values and Expected Utility 

To illustrate the difference between expected values and expected utility consider, the 

expected roll of a die (a single dice). Suppose that a single die is to be rolled.  The face that turns up 

on top is a random event. Suppose that you will be paid a dollar amount equal to the number on the 

face that winds up on top.  Since the probability of a particular face winding up on top is 1/6 and 

the value of the outcomes are 1, 2, 3, 4, 5, 6, arithmetic implies that the expected value of this game 

in money terms is $3.50 = (1)(1/6) + (2)(3.5) + (3)(1/6) + ......(6)(1/6). If you played the game 

dozens of times, your average payoff per roll would be approximately$3.50. 

Note that the expected value of a single roll of a die is 3.5, a number that actually is 

impossible, rather than “expected” in the usual sense in ordinary English. The values are all whole 

numbers. This is not always the case, but this example illustrates that the meaning of “expected 

value” is a technical one: namely the large sample average result, rather than the result that you 

would most commonly observe. There are many probability distributions in which the average value 

is also the mode, as with the normal distribution, in which case the expected value is both the 

average result and also the most likely value to be observed, 

Next, we’ll repeat the exercise for a concrete utility function, namely U =V.5, where V is the 

winnings from a particular roll of the die.  In this case 

𝐸(𝑈(𝑉)) =  ∑ (1/6) (𝑖).5𝑁
𝑖=1    (5) 

Or 𝑈𝑒 = (0.1667) + (0.2357) + (0.2887) + (0.3333) + (0.3726) + (4082) = 1.8053 

Note also that if the intermediate cases were for some reason impossible—or simply ignored as 

far as prizes are concerned, there would be just two possibilities, each with a probability of .5. In 

that case the expected utility is: 

𝑈𝑒 =  .5 (1).5 + .5(6).5 = (. 5) + (1.2247) = 1.7247 < 1.8053  (6) 
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Expected utility falls because the stochastic event becomes “riskier” when only the extremes 

outcomes are possible.  Note that the expected value of a single roll of the die is 3.5 in each case.  

Al, as we shall see later in the chapter, is quite risk averse. 

Utility functions that can be used to calculate expected utility values that consistantely rank 

alternative outcomes (according to expected utility) are called Von-Neumann Morgenstern utility 

functions.  Von-Neuman Morgenstern utility functions are all complete, transitive, continuous, and 

exhibit monotonicity.  In addition, they have the property of what is sometimes called 

substitutability which is a form of internal consistency with respect to stochastic circumstances.  If 

one is indifferent between outcomes x and y, then one is also indifferent between px and (1-p)z and 

py and (1-p)z, where p is the probability of event x. And, if z is regarded to be better than x, than 

pu(x) + (1-p)u(y) < pu(x) + (1-p)u(z). 

Experiments have been undertaken to use various gambles to create Von Neuman – 

Morganstern Utility functions—which, as it turns out, do not perfectly explain individual behavior 

under uncertainty in laboratories, but do so reasonably well. Von-Neuman Morgenstern utility 

functions for particular individuals are also "unique" up to a linear transformation (and considered 

by some to be a form of cardinal utility), because one can do arithmetic with them.2  

Expected Utility with Continuous Probability Functions 

Many economic choice settings concern variables that exist in a continuum, rather than 

being discrete. It is such choices that lent themselves to analysis using calculus-based models. Similar 

models can be developed to characterize choices where the outcomes are at least a bit uncertain, as 

the quality of an individual piece of fruit, bottle of wine, or automobile may not be known 

beforehand, because quality is itself a random variable.  To see how uncertainty about quality affects 

consumer choices, consider the following choice setting. 

Suppose that Al has a two-good strictly concave utility function, U=u(A,B) where the prices 

of goods A and B are PA and PB respectively. Al has W dollars to spend in the period of interest. The 

quality of good A is not known at the point of purchase, whereas that of good B is known with 

 
2 There are many possible explanations for the departures from the prediction associated with maximizing 

expected utility in experimental settings. One is simply that individuals are not very good at statistical theory, in which 

case, individual choices tend to be error prone. Another is that there are many other plausible strategies that individuals 

might adopt for coping with risky choice settings.  
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certainty. Given f(q), the density distribution of the quality of some good that an individual may 

purchase, the expected utility for Q units of good A can be written as an integral of the following 

sort. The density function is distributed between the lowest quality, L, and the highest quality, H, 

possible for the good of interest.  (Note that the substitution method has been used to characterize 

good B as a function of purchases of good A.) 

U𝑒 = ∫ U(Q(q), (𝑊 − 𝑃𝐴𝑄)/𝑃𝐵)f(q)  𝑑q
𝐻

𝐿
    (7) 

 

The integral written above is the expected (or average) utility associated with purchase of Q units of 

the good with stochastic quality. Note that the quality is not entirely unknown, but always lies 

between L and H and is distributed between those to levels in a manner that is well-understood and 

can be represented with a probability density function, f(q), that can be integrated.  

The quantity that maximizes expected utility can be found by differentiating expected utility 

with respect to Q and setting the result equal to zero. The first order condition in this case takes the 

form:  

U𝑄
𝑒 = ∫ [𝑈𝐴𝑓(𝑞) − 𝑈𝐵(

𝑃𝐴

𝑃𝐵
)]𝑑q

𝐻

𝐿
= 0  at Q*   (8) 

 

where A and B subscripts indicate derivatives with respect to the variables subscripted. Notice that 

the partial derivatives are results obtained by differentiating the integrand. The integral domains are 

carried forward and the function being integrated (the integrand) is replaced with its relevant first 

derivatives.  Also notice that what one obtains are terms for the expected marginal benefit (the 

integral of the first term, in terms of utils) and for the expected marginal cost of units of A (the 

integral of the second term, again in terms of utils).3   

The implicit function theorem implies that the Al’s demand for good A, here Q*, can be 

written as Q* = g(PA, PB, W, H, L).  The density function of quality uncertainty affects the shape of 

this function. However, as written, the demand function does not include a variable that 

characterizes that effect, but does include the end points of the domain (L and H) of that function. 

 
3 If one characterizes a utility function with a concrete function, then these integrals can often be 

evaluated.  This is also possible for single-variable abstract functions—integrals of which simply 
return the initial integrand, which are then evaluated at the high end of the range of possibilities 
(here H) and then the low end of the possibilities (here L), which is subtracted from the high end 
value, which in turn gives one the (net) marginal utility of a change in Q. 
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If the utility function or the probability density function had included a “conditioning” variable, 

such as weather, that variable would have been included in the demand function.   

The domain of the integral is determined by the probability density function. In the case 

used above, there is presumed to be a lowest (L) and a highest (H) quality.  In other cases, such as 

the normal distribution, the limits would minus infinity and plus infinity.  Some density functions are 

“full domain.”  Anything may happen, but some events more likely than others and some are 

extremely unlikely.  

One uses the term “probability density function” (pdf) rather than “probability function” 

here, because probabilities are associated with integrals of (areas under) the density function, rather 

than by the function itself. Thus, the total area under both a conditional and unconditional 

probability function is 1 (by definition). 

IV. Risk Aversion and the Demand for Insurance 

DEF:  An individual is said to be risk averse if the expected utility of some gamble or risk is less 

than the utility that would be generated at the expected value (mean) of the variable that 

determines utility.  

A risk averse person is one for whom the expected utility of a gamble (risky situation) is less 

than utility of the expected (mean) outcome when obtained with certainty. In mathematical terms, a 

person is risk averse if and only if 𝑈(𝑥)𝑒 < 𝑈(𝑥𝑒) where X is a binary random event, with one 

possibility, x’, occurring with probability P and the other occurring with probability (1-P).  𝑥𝑒 =

𝑃𝑥′ + (1 − 𝑃)𝑥" . This property is true of every possible pair of possible outcomes for a risk averse 

person.   

This property also implies that any net benefit or utility function that is strictly 

concave with respect to income, exhibits risk aversion with respect to income or wealth 

types of variables.  Why?  Because expected utilities are convex combinations of utilities. Recall 

that a function is strictly concave only if af(x’) + (1-a)f(x”) < f(ax’ + (1-a)x”) for any x’ and x” and 

any value of a with 0<a<1. If one substitutes a probability for the term a, you can see that the two 

definitions are essentially identical.   

A risk neutral individual is one for whom the expected utility of a gamble (risky situation) 

and utility of the expected (mean) outcome are the same. 𝑈(𝑥)𝑒 = 𝑈(𝑥𝑒).  A risk preferring 
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individual is one for whom the expected utility of a gamble is greater than the utility of the expected 

(mean) outcome. 𝑈(𝑥)𝑒 > 𝑈(𝑥𝑒). 

The degree of risk aversion is often measured using the Arrow-Pratt measure of (absolute) 

risk aversion:   𝑟(𝑌) = −(𝑑2𝑈/𝑑𝑌2)/(
𝑑𝑈

𝑑𝑌
) which is a measure of how steeply downward sloping 

the marginal utility of income is at a particular point.  In general, this implies that the more steeply 

downward sloping the marginal utility of income curve is, the more risk averse an individual is.  

In the illustrating example above where 𝑈 = 𝑉 .5, the marginal utility function is quite steeply 

downward sloping 
𝑑𝑈

𝑑𝑌
=. 5𝑉−0.5 and 

𝑑2𝑈

𝑑𝑌2
=  −.25𝑉−1.5, so 

 𝑟(𝑉) = −
[−.25𝑉−1.5]

.5𝑉−0.5 = (.25𝑉−1.5)(. 5𝑉0.5) = .125/𝑉    (9) 

Note that the degree of risk aversion for this function varies with V, decreasing as V increases. 

The utility Functions that imply risk-averse behavior are all strictly concave, as illustrated 

below. If the above individual, Al had been risk neutral, the Arrow-Pratt measure would have been 

zero.  If U =  V, then 
𝑑𝑈

𝑑𝑌
= 1 and 

𝑑2𝑈

𝑑𝑌2 =  0 , which implies that 𝑟(𝑉) =
0

1
= 0.   

The Geometry of Risk Aversion and Risk Premia 

The figure below illustrates a choice setting in which an individual is risk averse and facing a 

risky environment in which either an outcome with the value V1 or another outcome with the value 

V2 will occur.  The individual cannot influence which outcome it will occur, but knows that the 

probability of V1 is P, which implies that the probability that V2 is (1-P) (Recall that that the 

probabilities for the only two possible events have to add up to one.)  

Let’s refer to the individual as Al.  Al’s utility function is strictly concave, which means that a 

cord connecting any two points on it lies below the utility function (except for the two points used 

as end points—which, by definition, are not part of the cord). Assume that Al confronts an 

uncertain environment in which V1 occurs with probability P and V2 occurs with probability (1-P) 

Al’s expected utility in that case is: 

Ue =PU(V1) + (1-P)U(V2)    (10) 
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As P increases from 0 to 1, the expected utilities trace out the cord between U(V1) and U(V2) and so 

will be below the utility function if it is strictly concave.4  

 

This geometry is illustrated in the diagram above for a probability, P, that is approximately 

equal to 0.5, but it would be true for all probabilities 0< P < 1 and all strictly concave utility 

functions. 

This diagram can also be used to determine how much an individual would be willing to pay 

to have a certain payoff rather than face a risky or uncertain future. This is done by looking at the 

certain outcome that a person would be equivalent in their mind to the risky event. If we go to the 

left from the expected utility associated the two probabilistic outcomes over to the utility function 

and then down to the horizontal axis, we find the value (labeled Vind) that Al would find equivalent 

to the risky one faced. (Vind is the certain outcome that generates the same expected utility as the 

 
4 We have until this point used a “sufficient condition” for strict concavity,  namely that a utility 

function is strictly concave if it has a positive first derivative for V and a negative second derivative 
for V. In other words, Al’s utility function is concave if it exhibits diminishing marginal returns from 
V. However, however at this point the formal definition becomes a nice bridge between risk 
aversion and strict concavity. The expected value of V is Ve = PV1 + (1-P)V2 . Note that if U is 
strictly concave then U(Ve) > PU(V1) + (1-P)U(V2). As mentioned above, this looks exactly like the 
definition for concavity except that we’ve substitute “P” for “α”. 

 

V1 V2V
ind

P U(V ) + (1-P)U(V )1 2

U(V )1

V
e

Risk Premeum

U(V )2

U(V )
e

V  = PV  + (1-P)V
e

1 2

Expected Utility, Risk Aversion, and Risk Premiums

U(V)
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risky one faced. “ind”, stands for indifferent.)  The difference in values, Ve – Vind, (assuming that the 

values along the horizontal axis are in money terms) is the highest price that Al would pay to avoid 

the risk. 

It is also characterizes the lowest expected value that Al would accept to bear the risky 

environment shown rather than have outcome Vind with certainty. That difference is called Al’s risk 

premium for this choice setting or “gamble.” Note that Al would accept the gamble (risky 

environment) rather than Vind only if the expected value of the risky payoff is greater than Vind. How 

much greater would vary with Al’s degree of risk aversion. The more risk averse Al is, the greater the 

risk premium would have to be. 

The latter has implications for businesses in risky circumstances. Risk averse firm owners 

will demand a risk premium to bear the risks associated with their businesses. In such cases, 

Marshallian competition would generate different equilibrium profit-rates (returns) in different 

industries, ones that vary according to the riskiness of the business environment and the risk 

aversion of firm owners.    

Risk premia also have implications for an individual’s demand for insurance. An individual’s 

risk premium also characterizes the highest amount that Al is willing to pay for insurance that 

eliminates the risk confronted. Note that the expected loss can be represented as P(V2-V1) which is 

the distance from V2 to Ve=PX1+(1-P)V2 = P(X1 – V2) + V2 = V2 – P(V2-V1).  This last expression 

characterizes the expected value of the risky setting in terms of the loss that occurs when the 

unfortunate event occurs—possibly a fire, accident, or a disease. The risk premium is the amount 

above the objective risk that Al is willing to pay to avoid the risk.  

V. A Few Applications 

1) Selling Fire Insurance  

The existence of risk premiums plus the effects of sample size on sample means implies that 

selling insurance can be profitable. In our example, fire insurance transfers risk from homeowners to 

insurance companies. However, if the probability function is well known and the insurance company 

has many customers, the insurance company has only a very small risk.  The average payout from 

selling insurance would be approximately P(V2-V1) per customer, per year, and the price for the 

insurance can be up to P(V2-V1) + the risk premium from the above figure.  This implies that 

selling insurance can be profitable—although it does not guarantee it. 
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If a large number of purchasers for an insurance product exists, firms will have a quite 

predictable flow of expenses that are approximately equal to the expected value of the average loss, 

while customers are willing to pay more than that to avoid the risk of such losses. If the risk 

premium customers are willing to pay is more than enough to cover the cost of sales and 

administration of the insurance products sold, and insurance companies may be profitable 

investments. However, competition among insurance providers, in turn, tends to bring profit rate 

down to the “ordinary” rate of return that firm owners make from their other investments.  But the 

prices for insurance in equilibrium will be sufficient to keep them in business.  

Note that both the buyer choices and the insurance provider choices involve the 

mathematics of expected values rather than utility or profit maximization under certainty.  Insurance 

is a market that would not exist without measurable risks and the ability to shift risk from one group 

to another.  The ability to moderate risks through risk pooling—which is a property of the variance 

of sample averages, which tend to fall as sample size increases—is another key feature of the risks 

for which insurance is possible.   (Recall that the variance of a sample mean is var(sample mean) = 

σ2/n, where σ2 is the variance of the variable being sampled and n is the sample size.) 

2) Application: Expected Benefits Maximization and Uncertain Product Quality 

Another case in which probabilistic thinking is likely to take place is regarding products of 

uncertain quality at the point of sale. For example, suppose that Al is considering purchasing some 

produce from a farm and knows that some of the produce will be of high quality (H) and some will 

be of low quality (L) but simply can’t tell the difference between the two types or produce at the 

time of purchase, as is true of many types of produce (corn, potatoes, tomatoes, squash, etc). 

However, suppose that Al has sufficient experience with the farm or produce shop to know what 

the probability of a defective product is.   

Suppose that there are just two levels of quality that tend to turn up, high quality and low 

quality. Suppose also that the probability of high quality is F and that price per unit is simply P. 

Suppose that the benefits of high-quality units is B(Q, H) and the benefits from quality units is B(Q, 

L) where  B(Q,H) > B(Q,L) for every Q. 

How many units will Al purchase? Al’s expected net benefit from purchasing produce is 

expected benefits less expected costs: 

Ne = FB(Q,H) + (1-F)B(Q,L) - PQ     (11) 
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To find Q*, differentiate Ne with respect to Q and set the result equal to zero. 

F (dBH/dQ + (1-F)(dBL/dQ) – P = 0    (12) 

The first two terms of the expected marginal benefit of the produce and the last is its marginal cost. 

To find a specific value we would need to use concrete functional forms for the two benefit 

functions, as with BH =HQ.5. and BL =LQ.5, with H>L, in which case our first order condition 

would be: 

.5FH/Q.5  + .5(1-F)L/Q.5 = P    (13) 

Multiplying both sides by 2Q.5 yields HF + L(1-F) = 2PQ.5, which implies that Q* = [HF + L(1-

F)]2/4P2 

In either case, the quantity Al purchases rises with F (the probability of the high-quality type) 

and with the benefit of the high-quality product, H (an indication of the quality of the high-quality 

type) and falls as low quality version of the produce decreases or price increases.  

This risk is potentially insurable, but it may be too difficult to organize transaction by 

transaction and so remains an unprofitable type of insurance. (Notice the money-back-guarantees 

may reduce the buyer’s risk, shifting it to the seller—who may then increase his or her price by more 

than the expected loss per customer.  In effect, such guarantees make the seller an insurance 

company, and they can charge a premium for that service that their risk-averse customers are very 

willing to pay (at least up to their risk premium). 

3) Applications: Quality Control—A Role for Management and Monitoring 

Of course, quality variation is not only associated with agricultural products. All good and 

services have some variation in quality. Within mechanized construction processes, wear and tear, 

and product failures generate variation in quality affecting the usability of the products produce for 

buyers of the product.  Such variation may affect the durability of the product sold as well as the 

benefits that it provides to buyers. 

Insofar as quality variability can be estimated by consumers, and purchase decision are 

essentially independent of one another, we can use the net benefit maximizing model to characterize 

the demand for such products.  Ne = Be(Q) – C(Q) which can be represented as Ne = FbL(Q) + (1-

F)bH(Q) – PQ for the two-quality case, where F is the relative frequency of low-quality units and (-F) 
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is the relative frequency of high value units and P is the price of the units purchased. The benefit 

functions are both assumed to be strictly concave.  

 The quantity that a purchaser would acquire would satisfy the first order condition:   

dNe/dQ = FdbL/dQ + (1-F)dbH/dQ – P = 0 ≡ H. The implicit function theorem implies that Q* = 

f(P, F) with dQ*/dP = dH/dP/-dH/dQ = (-1) / -[ Fd2bL/dQ2 + (1-F)d2bH/dQ2] < 0 given the 

strict concavity of the benefit functions. The demand function is downward sloping in price. 

Similarly,  dQ*/dF = dH/dF/-dH/dQ = [dbL/dQ-dbH/dQ] / -[ Fd2bL/dQ2 + (1-F)d2bH/dQ2] < 0.  

As quality diminishes, demand falls as well. 

Notice that a firm selling this product and facing a downward sloping demand curve can 

influence the extent of demand though decision that affect the frequency of low-quality units. For 

example, a firm’s monitoring expenditures, M, may reduce F, with F = h(M). In effect firms have 

two controls in their efforts to maximize profits—monitoring (M) and output levels (Q), rather than 

simply one as usually assumed.  Moreover, in this case, the demand curve faced is partly determined 

by the firm’s decision about quality.   

Let P = g(Q, h(M)) characterize its inverse demand function. The firm’s profits in this case 

can be characterized as Π = g(Q,h(M))Q -c(Q,M) (assuming that input prices are constant in the 

period of interest).  There will be two first order conditions for its profit maximizing efforts: 

(dg/dQ)(Q+1) – dc/dQ = 0    (14) 

(dg/dF)(dF/dM)Q - dc/dM = 0      (15)   

Both first order conditions are simultaneously satisfied at the firms profit-maximizing output. This 

makes them a bit difficult to characterize in words. The monitoring decision will affect output 

decision by shifting the demand curve. And the output decision will affect monitoring by affecting 

the extent to which prices are affected by monitoring (dg/dF). But in each case, the ideal levels 

occur where marginal revenue generated by changing Q or M equals the marginal cost of Q or M. 

Notice that this relationship makes perfect sense in any market where firms face downward 

sloping demand curves, but is makes less sense in settings where the firms face are price takers and 

face horizontal demand curves. An increase in quality in that case, might cause all consumers to 

want to purchase the product from the sole firm that has successfully improved its quality, which it 

cannot do.  Or, it may cause the market to at least temporarily split in half, with one group of firms 

proving lower quality outputs than the other. 
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VI.Some Additional Applications of expected utility and expected profit maximizing choices 

The 1960s was a period in which rational choice models were applied to fields generally 

regarded by most economists to lie outside of economics. These new areas of research gradually 

gained sway inside economics and expended the field to areas of the economics of regulation, socio-

economics, law and economics, and political economy.  Several of these areas made use of the 

expected utility maximizing model and expected net benefit maximizing model.  Several Nobel 

prizes were awarded to the pioneers in these new areas of research, several of which are taken up in 

part III of this book. 

4) Applications: Expected Values and the Effects of Regulation 

i. One can also use this type of model to model the effects of economic regulation. 

For example, in the area of environmental regulations, firms will take account of their overall 

net benefits from pollution including both cost savings and anticipated regulatory fines when 

choosing their production methods. In the absence of fines or fees for pollution and in the absence 

of enforcement of fines greater than 0, firms will choose their production methods to minimize their 

production costs—as in the models developed in the first part of the course (prior to the midterm).   

(This does not necessarily mean that firms will pay no attention to air or water pollution, but 

they will do so only insofar as it affects the firm’s expected profit through productivity and cost 

effects. Air or water quality that affects the productivity of the firm’s workforce will be taken account of, but 

not spillovers on others outside the firm.)  

ii. In the real world, regulations are only imperfectly enforced, and firms know this.   

Consequently, it is not simply the magnitude of the fine or penalty schedule that affects a 

firm's decision to "pollute illegally or not," but also the probability that a person that violates the law 

will be caught, convicted and punished. Analyzing regulatory law and its enforcement on a firm's 

choice of production method and output level requires taking account of both the "expected cost" 

and "expected marginal cost" of any fines or penalties that might be associated with its production 

and output decisions. 

(In addition, firms might face a loss of reputation and therefore reduced demand for their 

products if they are found guilty of violating regulatory law, but that effect will be ignored or 

assumed to be part of the fine.) 
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iii. Consider a case in which production methods are fixed and output is regulated—which is 

the easiest case to model. 

In a regulatory environment with fines, a pragmatic firm's expected profits equal its total 

revenues less its production costs less its expected fines:  𝛱 = R - C - Fe  where Fe = PF. Suppose 

that Acme’s output is sold in a competitive market, its cost function is C=cQ2wr and that its 

expected fine is the probability of being caught and convicted, which increases with output in excess 

of the regulatory limit, p(Q-QR) and a fine schedule that increases with the extent of the violation 

f(Q-QR) for Q> QR. 

𝛱e = PQ – cQ2wr – p(Q-QR)f(Q-QR)   (16) 

To make the functional form a bit more concrete, let us assume that P(Q-QR) = a(Q-QR) 

and f(Q-QR) = b(Q-QR).  In this case, Acme’s expected profits are: 

𝛱e = PQ – cQ2wr – a(QR-Q) b(QR-Q) = PQ – cQ2wr – ab(Q-QR)2  (17) 

Assume that the regulatory constraint is binding on Acme, and so it will take the expected fine 

schedule into account when making its output decision.  Its expected profit maximizing output can 

be characterized by differentiating the above function with respect to Q, which is a bit more 

complex than usual because of the “Q-QR” terms. 

𝛱e
Q = P – 2cQwr – 2ab(Q-QR) = 0   (18) 

iv. This can be solved for Q* . First, shift the Q terms to the left side of the equal sign: 

• P = 2cQwr + 2ab(Q-QR) = Q(2cwr + 2ab) – 2abQR 

• Adding 2abQR and dividing yields: 

• Q* = (P+2abQR)/(2cwr + 2ab)  (19) 

This is Acme’s supply function in the regulatory environment modeled. 

v. Note that its output now varies with the regulatory standard (QR) its input costs (w and r) 

and parameters of the probability of being fined and fine schedules (a and b). 

Acme’s output declines as input prices and the expected fines increase (w, r, a, or b increase) 

and increases as the regulatory threshold (QR) increases. (Another possible output is simply QR, but 

this cannot be modeled with calculus because of a discontinuity in the expected cost function at that 

quantity. See below.)  



19 
 

A. The diagram to the left illustrates Acme’s 

decision in this type of setting (with 

somewhat simpler probability and fine 

schedules).   

B. For students that have had public 

economics, note the similarities between 

Pigovian taxes and optimal enforcement 

with fines.  

If the regulation attempts solve an 

externality problem and achieve Pareto 

efficiency, Q**, then the smallest fine 

sufficient to induce the target Q** has 

the same expected value as a Pigovian 

tax at Q** (with QR ≤ Q**).  The 

expected fine should equal the expected 

marginal damages done by the Q**th 

unit of output. 

C. Note that there is always a policy-

tradeoff between the probability of 

conviction and the optimal level of 

punishment. [ Recall that the expected fine is Fe = PF ] 

D. Some General Implications 

i. The larger the fine, the smaller the probability of capture can be to generate the same effect 

on individuals. 

ii. The larger is the probability the smaller the fine can be and still have the same effect. 

a.    The effect is determined by the expected fine, PF, in this case.  

b.    The probability that an illegal activity is detected and punished varies with the 

resources used to enforce the law and the flagrancy of the violation, so the 

probability of being caught and punished tends to vary with law enforcement 

budgets and the size of the violation.  

c.    The politics of enforcement and penalties are partly determined by error rates in 

detecting criminal activities--sometimes the wrong person is singled out for 

punishment.  

• Puzzle. Given this, how would you pick the appropriate punishment for speeding? for 

theft? For murder? etc.   

• Puzzle. How would the relative importance of the probability of detection and the 

expected fine be affected by the process of a jury trial and a long delay between being 

detected and being fined? (Some ideas for doing so are provided in the next chapter.) 

Output 

MC 

MR 

Effect of an Efficient Expected Fine Schedule 
On Firm Output (fine varies with output, so MFe > 0 ) 

Q* Qlegal 

$/Q 

MC + MFe (marginal production cost s 
plus marginal  expected fines) 

Output 

MC 

MR 

MC + MF (expected 

Effect of an Inefficient Expected Fine Schedule 
On Firm Output (fine varies with output, so MFe > 0 ) 

Q* Qlegal 

$/Q 
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• Puzzle: Write down an expected profit function for a firm facing a fine schedule that 

is imperfectly enforced, but where the fine increases as Q exceeds Q legal. Find the 

first order conditions and compare them to the above diagrams. 

• Puzzle: draw examples of a perfectly enforced and imperfectly enforced  "fixed fine 

schedule."  (Such fines do not affect expected marginal costs.) Compare your graph 

with the mathematics of expected profit maximization in this case. Are such fines 

always irrelevant? 

5) Applications: Expected Values and the Logic of Crime and Punishment 

i. The economic analysis of crime derives from a classic paper written by Gary Becker (1968), 

who subsequently won a Nobel prize in economics, only partly for that contribution.  In 

that paper, and in many others published since then, a criminal is modeled as a rational 

agent interested in maximizing his expected income or utility, given some probability of 

punishment. 

ii. This type of model can be used to model theft and violations of other laws. 

In the real world, criminal laws are only imperfectly enforced, and both criminals and 

ordinary persons who occasionally think about violating a law or two know this. For example, a net 

income maximizing criminal would maximize an expected function like  

𝛱e = PQ – cQ2 – p(Q)F     (20) 

where Q is the number of crimes (thefts), price is the average price received by “fencing” the stolen 

goods, p(Q) is a probability function describing the way that that the probability of being caught and 

convicted varies with the number of crimes and F is the financial penalty assessed (or if jail time is 

spent, the opportunity cost of the time spent in jail and any subsequent losses in earnings). 

The rational theft chooses Q* such that 𝛱e
Q = 0, which in this case requires Q* to satisfy  

P-2cQ – pQF = 0  or P = 2cQ + pQF   (set  the marginal revenue from theft equal to its expected 

marginal cost, which is not known with certainty).  Let’s give the probability function a concrete 

form as with: p = aQ2 then pQ = 2aQ and the above first order condition becomes P-2cQ – 2aQF = 

0  or P= 2cQ + 2aQF, which can be solved for Q. 

P = Q(2c +2aF) → Q* = P/(2c + 2aF)   (21) 

Note that this implies that the rational criminal responds to incentives, his or her crime rate 

falls as the probability of being caught and convicted rises (e.g., with 2a), as the fine increases, and as 

the marginal cost of theft increases. Note also that there are tradeoffs between the size of the fine 

and the probability that a criminal is caught in terms of their overall effect on the criminal. 
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(This model provides a short form of Gary Becker’s classic 1968 paper on crime and 

punishment.)  Addition economic implications of crime and punishment are developed in chapter 

15. 

Many other examples from law and economics can also similarly modelled. One does not 

have to be a more or less professional criminal for this logic to apply.  One can think of choices to 

drive faster than the speed limit on a highway or to park without putting money in a parking meter, 

or to trespass on a neighbor’s property, fail to report some income on one’s taxes, and so on in 

much the same manner. 

 

VII. Some General Conclusions about Risky Choices 

The main implication of this chapter is that neoclassical economics and its associated models 

can be easily extended to take account of risk—that is to say, choice settings in which outcomes are 

uncertain, but the probability of various outcomes can be accurately (or exactly) estimated. In such 

case, the logic of optimizing choice applies and the choices can be modelled in the usual way using 

diagrams in calculus that take account of risk.  

There are several new implications.  

First, that individuals with similar tastes may nonetheless differ in their degree of risk 

aversion.  Individuals may all prefer more income or wealth to less income or wealth, but their utility 

functions (to the extent that these can be worked out or estimated) may differ in their curvature, in 

their degree of strict concavity.  The Arrow-Pratt measure of risk aversion is one way to measure 

such differences.  Some people are more risk averse than others, and so willing to pay more for 

insurance than others. 

Second, risk aversion creates markets for insurance.  If everyone were risk neutral, insurance 

like products might still exist, but there would be no sales of such products, because consumers 

would not be willing to pay a premium for those products—and that premium is necessary to cover 

the cost of administering insurance products. 

Third, insurance products and similar products not always considered to be insurance imply 

that risks can be shifted from one individual to another and from one group to another. Moreover, 

they also demonstrate how risks can be pooled by insurance companies in a way that actually 

reduces overall risks, because of the statistics of sample means.  As the sample size increases, the 
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variance of the sample mean falls, and thus risk also falls.  Insurance companies with accurate 

estimates of the probability of an insurable event, know almost precisely the amount that they will 

pay out from year to year. 

Moreover, competition among insurers—as noted by Frank Knight—tends to reduce 

insurance company profits (for honest companies) to “ordinary” rates of return—the so-called zero-

profit equilibrium of Marshallian perfect competition.  It may not do so entirely, because of 

differences in size and organization, but the Marshallian implications can serve as a first 

approximation when there are large numbers of firms that provide insurance. 

Fourth, there are many situations in which risks are not pooled and in which consumers, 

firms, or entrepreneurs have to make decisions in risky choice settings—shall I bring an umbrella or 

not?  In these cases, one can use expected utility or expected profit maximization to model the 

decisions reached and their comparative statics.  Although experimental evidence suggests that 

individuals do not perfectly behave as predicted, in most cases, the models provide a good first 

approximation for the average behavior and for how changes in circumstances affect that behavior.5 

  

 

 

   

    

  

 

 
5 See, for example, for an overview of prospect theory see KD Edwards (1996) or Tversky and 

Kahneman (1992, 2013)—who won a Nobel prize for their work in this area and others, that show 
some limits of the rational choice model.  


