
Statistical and Game Theoretic Representations

of States of the World and Information

Lecture 2: Introduction

(U. Bayreuth, Spring  2006)

Last time we talked about the "informational" nature of experience, the
idea of received wisdom about categories, language and norms.  I argued
that all experience is really information and all decisions are
informational. (Choice comes before action.) And, I argued that it is
possible to know something about the world. Insofar as communication
is possible, it implies that we share a common information set. However,
everyone's private collection of information is a bit different because
experience and training tends to be just a bit different. Thus, there is also
a sense in which we each live in our "own" unique world, even thought
that world has a lot in common with others.
A good deal of that variation occurs because of chance or random events.
Today I want to discuss mathematical and statistical methods for
representing the world in general and information in particular.

I. To think about the world using mathematical terms, we might
first imagine a state of the world, S1

A.  Suppose that we are completely confident that S1 is the true state of
the world, and that we are interested in what happens next, which we can call
S2.

B.  If there is a completely deterministic causal connection between S1 and S2,
we can represent this with a function.  S2 = f (S1).  

A function maps every point in its domain to a unique, single point, in its
ranges.

In this case the world is like a great clock and one event (one cog in the
clocks gear) necessarily leads to the next event (next cog in the gear).

S1

s'1

S2

s'2

(present)

(future)
f(s1)

(f is a function)

In such a world, there is no free will and there need be no uncertainty.
C.  If, however, there is stochastic or random causal connection between S1 and

S2, we can represent this with a functional.  S2 = g (S1).  
A functional maps particular points in a domain into range that consists of
sets rather than single points. Here S2 is a set rather than a single point.
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g(s1)

present

future

(g is a functional)

s'1

s'2

(possibilities)



(Purists will note that a function is a special case of a functional, why?)

Presents'1

P(S2 | S1)

probability 
functions

P(s'2|s'1)

D.  A conditional probability function is a functional, that is slightly different
from this;  rather than mapping S1 into what can happen, S2, it maps into a
probability function over those possibilities, P2.

P2 = f(  S2| S1) is the probability function over S2 possibilities in period two.
That is to say, P2 is the "conditional probability function" that characterizes
the future given S1 has happened and S2 is the set of what could possibly
happen given that S1 has happened. 
(In such a world, there could be free will. If your thought process has a
random component, you will not be completely predictable even to
yourself.)

E.   Notice that a conditional probability function may represent a real
phenomena. 

For example if S1 is "you roll a dice that has the numbers 1 to six on it",  P2
is 1/6 for 1, 1/6 for 2, 1/6 for 3 ...... and 1/6 for 6 if the dice is fair.
If instead, if S1 is "you roll a dice that has the even numbers 2 to 12 on it",  
P2 is 1/6 for 2, 1/6 for 4, 1/6 for 6 ...... and 1/6 for 12 if the dice is fair.
P2 would also be different if you used an unfair dice instead of a fair dice--
one that produced a higher probability for, say, 2, than for the other
numbers.
The range of real possibilities and their probabilities can be quite different if you begin in
different circumstances.

F.  Notice that you can also use conditional probabilities to represent theories
about real world 

A simple theory would say that P2 the probability of a 1 is 1/6 , of a 2 is 1/6
for 2, 3 is 1/6 ...... and of a 6 is 1/6 if the dice is fair.  In this case, the theory is
that if a dice is fair the probability function will look a particular way.
Given theory "F" a particular probability function is associated with rolling
a dice, P2 = f( F | S), where S is the set of numbers on the die of interest.
(For purists, a pure deterministic causal theory assigns P = 1 to the event
that has to happen and a P=0 to all others--only one event is possible!)

G.  Notice that you can also use conditional probabilities to express
uncertainty about the real world.

For example, suppose that the dice landed in a place hidden from view and
you were asked to predict the value of the number on top.
If you believed that the dice was fair you would admit that you do know the
value--really cannot know it even though there is a particular value on top,
but you could say that the probability of a 1 is 1/6 , of a 2 is 1/6 for 2, 3 is
1/6 ...... and of a 6 is 1/6 if the dice is fair.  
If you did not know whether it was a fair or unfair dice you would also be
uncertain about the probabilities as well as the number on top.
Given your belief, theory "F." a particular probability function is associated
with rolling a dice, P2 = f( F | S), where S is the set of numbers on the die
of interest.

H.  If you repeated the experiment, you could also test your theory and determine
whether the dice was really fair. 

If you repeated enough times, you might eventually decide that you had
seen two many "2s" for this to be a fair dice!
Here, it bears noting that statisticians are quite interested in how one can reject a
theory--again with various levels of uncertainty.
In a statistical world, you are rarely 100% sure, only more or less certain that
one might be correct about one assessment of the probabilities. 
(Draw pictures of confidence intervals for point estimate and for a linear
function.)
(Although, given the six sided dice with the number 1 ... 6 on them, you can
be absolutely certain that you will not roll a 7, because P(7)=0.)
A good deal of the work the econometricians do is of this sort, at least in
principle.

I.  One can also attempt to learn the correct probability function associated with
the dice that one if throwing.
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There are several technique that could be used. 
The simplest technique would be to through the dice over and over again
and create a table or diagram of the results. 
By counting the number of times that each number turns up on top, and
dividing by the total number of dice throws, you would have a good
estimate of the true probability function.  
This is sometimes called the "frequentist" assessment of probability.

J.  Elemenetary statistical theory implies that the more time that you throw the
dice, the more accurate is your estimate of that function--other things being
equal. 

Given an "infinite sample" you would actually know the true probability
function that describes the numbers on top of the dice after it is thrown.
Note that this can be considered a process of learning that converges
on the truth even though it does not produce certainty!

II. The Bayesian Representation of Learning
A.  If one can not spend "all day" collecting data, there is another method of

statisitical learning that often called Bayes' Law or Bayesian Updating
B.  Given that you have observed "x" after  and you have theory "p(s)" that

predicts the probability of another value or variable, s. "p(s)" is said to be the
prior probability (its your initial theory). 

Suppose that you also now know that the probability of x given s, f(x|s)
and you know the probability of x is f(x). 

C.  Bayses law says that you should update your theory given what you have
observed. 

p(s|x) = p(s) p(x|s) / p(x)
p(s|x) becomes your new "prior" and the next roll of the dice gives you you
another "x" which can be regarded as new "information" about p(s)
So, you again update your theory about the probability of s
(For a nice proof and explanation of Bayes' law, see Wikipedia.)
So the learning process goes: (1) form a theory (or a prior), (2) observe the
world, (3) update your priors based on what is observed (suing Bayes' law to
determine "posteriors"). The posterior becomes the new "prior" and the
process is repeated.
(In the setting where you know nothing about the problem, you are
assumed to use a "diffuse prior" which is a uniform distribution.

D.  If your repeat this process, it can be shown that, in the limit, the posterior
probability function converges to the actual probability function--in the sense
that it is the "expected result" of the process of updating.  

E.  This representation of learning is widely used in game theory and economic
models.

An person is said to be in a Bayesian equilibrium when new information no
longer affects the posteriors, e.g. when p(s|x) = p(s)

F.  The Baysian idea can be generalized to include other similar "empirical" learning
functions where p(s) = f( past observations)

III. Weaknesses in the Baysian representation of learning
A.  Although a convenient and powerful mathematical representation of learning,

it clearly has many weaknesses--both as a theory of learning and as a
representation of learning.

B.  The conceptual limitations of the usual statistical representations of learning
are most apparent in cases in which statistical search or signaling models fail to
operate. 

For example, learning is ruled out within a Bayesian framework whenever
some dimensions of the prior probability distribution are missing, because
the person in question is ignorant of their existence. 
Conventional Bayesian updating in such cases does not occur, because
regardless of the next event observed the posterior on the missing dimensions
remains zero. In such cases, knowledge cannot be accumulated by
experience of the sort analyzed in statistical models of learning.

C.  To see this, recall that the posterior probability of event s, given that m has
occurred, is the probability of s times the probability of observing m, given that
s is true, divided by the probability of event m (Hirshleifer and Riley 1992).

P(s|m) = [P(s) F(m|s)/ F(m) ] (1) 
If the probability of s is initially assigned a value of zero, P(s) = 0, whether
implicitly or explicitly, the posterior probability will always be zero whatever
the actual probabilities of m and m given s may be. 
This holds regardless whether P(s) is assumed to be zero or if one is totally
ignorant of the existence of s and so no probability is assigned to s. 
That is to say, Bayesian updating allows refinements of theories (which can
generally be represented as conditional probability functions) over events
that are known to be possible, but not over events completely ignored or
completely ruled out a priori.
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D.  Learning these “missing dimensions” involves a reduction in ignorance that is
fundamentally different from Bayesian updating and similar statistical
representations of learning. Priors are not updated when ignorance is reduced,
but, rather, new priors are created for previously unrecognized possibilities.1

E.  It also bears noting that reducing ignorance does not always increase one’s
sense of certainty. 

F.  This contrasts with most statistical notions about which are based on Shannan
and Weaver’s (1949) pioneering work on information theory. 

Within the context of most statistical characterizations of learning,
additional information tends to reduce the variance of the estimates of
relevant model parameters, as in ordinary sampling theory. 
In the price search illustration, as is often the case for discrete reductions of
ignorance, the discovery of new possibilities simultaneously provides new
information and increases uncertainty. 
The combined mall–discount store price distribution has a larger variance
than that of the mall alone. The larger world is often more complex and
uncertain than previously appreciated.

G.  Discussion: what about "other" as a residual category: magic and miracles? 

IV. Discrete representations of information: ignorance and knowledge
A.  As a consequence it is clear that discrete representations of information are

also useful.
B.  These will be taken up in future lectures, but are widely used in game theory to

characterize "simultaneous" move games, etc.

1  Binmore (1992, p. 488) suggests that a complete list of the possible outcomes is not even conceptually possible or at least is beyond the capacity of real decision makers. Frydman (1982) argues that agents cannot
generally compute optimal forecasts in competitive markets, because they cannot estimate the forecasts of all other agents.

Cyert and DeGroot (1974) provide one of the earliest analyses of the relationship between Bayesian learning functions and rational expectations. Cyert and DeGroot note many cases in which Bayesian learning
converges toward rational expectations and market clearing prices. However, they also note several failures (inconsistencies) in cases where the original model used by individuals (firms) is incorrect. 
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