
An Introduction to Non-Cooperative Game Theory
Applications of game theory are commonplace in the most active areas of
research in economics, political science, and philosophy.  A quick look at any
economics, political science, and sociological journal in the past two decades
will reveal a large number of articles that use game theory to analyze a broad
range of individual behavior in wide a variety of social settings.  

The use of  game theory in economics is quite old. For example, the Cournot
duopoly model (1838) is an example of a non-cooperative game with a Nash
equilibrium.  Analysis of Stackelberg duopoly (1934) and monopolistic
competition (Chamberlin 1933) are also based on models and intuitions like
those of game theory, although “game theory” did not really emerge as a field
of study until after WWII. 

In economics, interest in modern game theory increased rapidly during the
1980s and 1990s, and became one of the main methods of analysis in micro
economics and experimental economics. 

Modern work on: the properties of contracts, team production, negotiations
within cartels, credible commitments, the production of public goods,
externalities, time inconsistency, bargaining, and models of political and social
competition all use game theoretic models as their "engines of analysis."

Most of these applications apply the rational choice model that we have been
exploring during this course. That is to say, game theory assume that players
are "rational" in the sense that they are forward looking and attempt to
maximize net benefits (or utility).  The game "outcomes" are normally
"payoffs" that are characterized with net benefits or utility levels. Each player
is assumed to maximize their own utility or net benefits, given what the other
players have or might do. 

In this next block of the course, we’ll review some basic tools from game
theory and apply them to micro economic phenomena, mostly ones dealing
with market structure and team production. 

As in the rest of the course, we’ll use the rational choice model to "predict"
behavior, but now in settings where one’s payoff depends in part on the
behavior of other persons “in the game.” 

As usual, we will begin with relatively simple choice settings and proceed to
more complicated ones. 

Initially, we’ll assume that there are just two players and two possible
strategies. This turns out to be enough to shed light on a variety of choice
settings. If we have time, we’ll also take a quick look at more complex settings
with more possible strategies, larger numbers of players, and repeated games.

I. Non-Cooperative Games
A. Game theory can be used to model a wide variety of human behavior in

small number and large number economic, political, and social settings. 
B. The choice settings in which economists most frequently apply game

theory, however, are small number settings in which outcomes are jointly
determined by the decisions of a handful of independent decision makers. 

i.  In "non-cooperative game theory" individuals are normally assumed to
maximize their own utility without caring about the effects of their
choices on other persons in the game.  
{ The outcomes of the game, however, are jointly determined by the strategies

chosen by all players in the game.
{ Consequently, each person's welfare depends, in part, on the decisions of other individuals

"in the game."  

C. The simplest game that allows one to model social interdependence is a
two-person game each of whom can independently choose between two
strategies, S1 and S2. 

i.  There are four possible outcomes to the game:
{ (1) both players may choose S1, (2) both may choose S2 

{ (3) player A may choose S1 and player B may choose S2, or (4) vice versa. 

ii.  The particular combination of strategies is the result of the independent
decisions of the two players, A and B (Al and Bob).
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D. For example, consider the "trading game" below. 

i.  Bob has bananas and Al has apples. Bob is thinking trading some
bananas for some of Al's apples. Al is thinking about trading apples for
some of Bob's bananas.

ii.  Since trade is voluntary, nothing happens unless both players agree to
trade. However, for the purpose of illustration, It is assumed that it costs
"one util" or one dollar to make an offer, whether taken or not. 

iii.  Thus the lower left hand and upper right-hand cells have payoffs for Al
and Bob that are lower for the one making the offer (trading), while the
other is unaffected. 

iv.  Normally the payoffs are in terms of "utility," "euros," or "dollars," but
occasionally other values are natural for the problem at hand.

v.  (This type of game is sometimes called an "assurance game" or a
Stag-Hunt game.)

E. A game can be said to have a Nash Equilibrium when a strategy
combination is "stable" in the sense that no player can change his strategy
and increase his or her own payoff by doing so.

i.  Note that the above trading game has two equilibria, (trade, trade) and
(don't, don't). Neither person can make themselves better off by
changing their strategy (alone) given that of the other player(s) in the
game. 

Someone has to “make an offer” to induce trade to take place and
making an offer is cosly, making one a bit worse off if it is refused.

ii.  Learning to trade takes some time and is sometimes the process is
formalized  by routines or stable strategies.. 

Suppliers often take this first step by putting their “wares” out for sale at
markets or in shops or on the Web.
The idea of a “store front” can be thought of as an institution for making
offers to potential customers.
This technology for solving the assurance game is very old, and goes back
beyond Rome and beyond Ancient Greece.

iii.  DEF: A state of the world or game outcome is said to be Pareto
Optimal or Pareto Efficient, if it is impossible to reach another state
where at least one person is better off and no one is worse off. 

Note that the (Trade, Trade), equilibrium is Pareto optimal, but none
of the other outcomes are. 

iv.  A shift from one cell to another is said to be a Pareto Superior Move,
if at least one person is better off and no one is worse off.

A move from the (don’t, don’t) cell to the (trade, trade) cell is a Pareto
superior move.

F. Two-Person two-strategy games are often used to illustrate decisions that
may in reality involve more than two persons and involve more than two
strategies.

i.  Some choices can be “factored” down into a series of two person
choices of this sort.

ii.  Other cases, involve choice settings where the 2x2 game captures the
essence of the choices involved.

iii.  2x2 and 2x3 games can often capture the essential features of important
choice settings of interest to social scientists. 
a. However, as the above game theoretic representation of the "problem of

exchange" demonstrates, the usual economic representation of exchange
misses some details that may be important. 

b. On the other hand, the Edgeworth box very nicely illustrates why the trade,
trade equilibrium tends to be Pareto optimal, which we used to determine
the relative sizes of the game's payoffs.
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II. The Prisoners' Dilemma Game: A Simple Non-Cooperative game,
with “suboptimal” outcomes.

A. The Prisoners' Dilemma game is probably the most widely used game in
social science.

i.  The "original" prisoners dilemma game goes something like the
following.  Two individuals are arrested under suspicion of a serious
crime (murder or theft).  Each is known to be guilty of a minor crime
(say jay walking), but it is not possible to convict either of the serious
crime unless one or both of them confesses.

ii.  The prisoners are separated.  Each is told that if he testifies about the
other's guilt that he will receive a reduced sentence for the crime that he
is known to be guilty of. 

iii.  The Nash equilibrium of this game is that BOTH TESTIFY (or Both
CONFESS).

B. To see this consider the following game matrix representing the payoffs to
each of the prisoners:

i.  Each cell of the game matrix contains payoffs, for A and B, in years in
jail (a bad). [
{ Most games have net benefits rather than losses as payoffs, and PD games

can be represented in terms of net benefits as well.
{ Usually higher numbers are to be sought out, but in this case, higher numbers

are to be avoided. They are losses rather than net benefits or utility.) 

(2,2)(12,1)Don't

(1, 12)(10,10)Testify
against B

Prisoner
A

Don'tTestify
Against A

Prisoner B
Classic Prisoners Dilemma (PD) Game

ii.  Each individual will rationally attempt to minimize his jail sentence.

{ Note that regardless of what Prisoner B does, Prisoner A is better off
testifying. 10 < 12  and 1 <2.  Testifying is the dominant strategy.

{ Note that the same strategy yields the lowest sentence for Prisoner B.  If A
testifies, then by also testifying B can reduce his sentence from 12 to 10 years.
If A does not testify, than B can reduce his sentence from 2 to 1 year by
testifying.  The dominant strategy is a pure strategy in that only one of the
strategy options is ever “best” given the options of the other player, and that
“pure strategy” is used by each player.

iii.  The (testify, testify) strategy pair yields 10 years in jail for each.  
{ This is said to be the Nash equilibrium to this game, because given that the

other player has testified, each individual regards his own choice (testifying)
as optimal.  

{ No player has an incentive to independently change his own strategy at a
Nash equilibrium.

iv.  That is to say, every player is doing as well as he or she can (e.g.
maximizing net benefits or utility) with their chosen strategy, given what
all other players are doing. 

v.  It is a dilemma because each prisoner would have been better off if
neither had testified.  (2 < 10).  
{ A Pareto superior move exists. Independent rational choices do not always

achieve Pareto optimal results. 
{ [f course, society at large may regard this particular dilemma as optimal

insofar as two dangerous criminals are punished for real crimes.
{ (What I have called "testifying" is often called "confessing" in other  textbook

discussions of PD games.)  

C. The prisoner's dilemma game (PD game) can be used to model a wide
range of social dilemmas. One game of particular interest for the purposes
of this course is to model the behavior of markets with small numbers of
firms, such as a duopoly, with just two firms.

i.  Note that Bertrand duopolists may behave as if they were perfectly
competitive firms at their price setting Nash equilibrium.
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ii.  This is not the only possible way to represent relations between two
firms, but it is a useful one for understanding why cartels are hard to
establish. 

iii.  (The Cournot Duopoly model where quantity is controlled rather than
price was developed in class has a quite different equilibrium--one that is
between the monopoly and competitive outputs, prices, and profits.)

0, 04, 211, 1Comp Q3

2, 45, 512, 4Q2

1, 114, 1210 , 10Monop Q1Firm A
Q3Q2Q1

Firm B
Cournot Output Decision

iv.  There are many PD-like games (social dilemmas) that are of interest to
economists--some of which are illustrated in the notes below and/or in
the appendices. Examples include:
v The Cournot Duopoly Game
v The team production problem

v Decisions to engage in externality generating activities.  (Pollution)
v Competition among students for high grades vs. leisure in universities
v Contract Breach/Fraud (in a setting without penalties)
v Commons Problems
v Public goods problems
v The Not In My Backyard Problem
v The free rider problem of collective action.
v The dilemma of thieves
v The international regulation dilemma
v The arms race

v.  [We will go over some of these games in lecture. ]
{ Several other named games are illustrated in the appendices of this set of

lecture notes. 
{ Some of these will turn up in your other courses, where they will be a “main

dish” rather than a “side dish.”

D. What characterizes a PD game is that the "cooperate, cooperate"
solution is preferred by each player to the "defect, defect" equilibrium.
However, the value generated by defecting is somewhat higher than the
cooperative strategy regardless of whether the other player cooperates or
not.

i.  Often the payoffs are represented "ordinally" with numbers
indicating rank order or utility levels. 

ii.  The higher numbers indicate higher net rewards, rather than with
years in jail, or a particular payoff value in profits or net benefits. 
{ (3,3) is often used for the mutual cooperative solution and (2, 2) for the

mutual defection result. 
{ The other payoffs are then (1,4) and (4,1) with the defector receiving 4 and

the cooperator 1.
{ The best outcome is 4, second best is 3, third best is 2, and worst is 1.
{ [These payoffs are often used in some of the illustrations in lecture.]

E. The PD payoffs can also be represented algebraically with (abstract)
payoffs.
{ (C, C) and (D, D) are the payoffs of  the mutual cooperation and mutual

defection outcomes
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{ And  (S, T) and (T, S) for the "temptation" and "sucker's" payoffs when one
person defects and the other is "played for a sucker.

{ In a PD game, T>C>D>S.

F. The PD game's main limitations as a model of social dilemmas are its
assumptions about the number of players (2), the number of strategies (2),
the period of play (1 round).  
{ However, most of these assumptions can be changed without changing the

basic conclusion of the analysis.
{ It is the generality of the conclusion, rather than generality of the model itself

that allows it to be used to illustrate so many choice settings.
{ For example, similar conclusions follow for N-person games in which the

players have an infinite numbers of strategies (along a continuum) and play
for any finite number of rounds if the net benefit maximizing efforts of A
impose costs on B, as they do in the PD game.

{ However, not all games have equilibria that are social dilemmas, as with
the  (trade, trade) equilibrium in the first game matrix above.

{ And not all social dilemmas are as bad as those associated with the 2x2
version of the PD game.

{ [As an exercise, develop payoffs for a 3x3 (3 strategy) game matrix in which
the middle solution is a Nash equilibrium, but that one of the other solutions
is Pareto superior to it. Not all dilemmas are extreme (corner solution) ones.]]

III. Organizations and Team Production
A. An important game that takes place within every firm and most other

organizations is the Team Production Game.
B. The term “organization” has a variety of meanings, although all share the

notion that organizations are relatively durable products of human action,
although not always entirely of human design. An organization is normally
created by formeteurs to realize advantages that can be realized when a
group of person’s can be induced to interact in a manner that increases
their overall productivity. 

C. Team production, by definition, generates more output than would be
produced by the same persons acting independently of one another. When
organization’s pay, their teams will produce more output than otherwise
similar groups that are “not organized.” 

D. Organizations must solve a variety of coordination, prisoners dilemma,
coordination, and prisoner’s dilemma with exit problems. With this in
mind, a variety of standing procedures and rules are normally adopted by
organizations to reduce such problems. Such rules are often necessary to
realize the advantages of team production.

i.  In game theoretic terms, an organization’s rules create the payoff
functions and determines the set of persons eligible to participate in the
contest(s) devised or managed. 
a. The rules include the procedures for recruiting team members, and a variety

of conditional rules that determine compensation and promotion within the
organization. 

b. As in any “standing game” the organization’s rules determine the returns
from alternative strategies at the margin, which in turn encourages some
forms of behavior and discourages others within the organization. 

c. Through such effects, the standing rules determine the equilibrium within
the organization, the stable patterns of life that exists within organizations
during “office hours.” 

d. Relatively few of these rules affect behavior while at home, where team
members become individuals and family members who may behave entirely
differently. 

e. (It bears noting, however, that the reach of an organization’s rules is being
extended as office hours become more elastic, because of internet and cell
phone technologies).

E. In many cases, the main reason that organizations are founded is to
address is the shirking dilemma, the tendency of persons engaged in team
production to shirk rather than work.

i.  The team production problem is illustrated in the game matrix below.
Note that the payoffs resemble those of a PD game.

ii.  Unfortunately, the “natural”  reward structure of the
“cooperative”--sharing team production equally (and
unconditionally)--fails to encourage sufficient productive work to
maximize the advantage of team production. 
a. Shirking by team members frees time for their own use, while reducing the

productivity of other team members. 
b. In the game illustrated mutual shirking is the equilibrium outcome.
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The cell entries are utilities (or net benefits), the rank order of subjective payoffs
for the team members (A, B). The dilemma in the “natural case” is that both
team members shirk rather than work.

2,24,1Shirk (A)
1,43, 3Work (A)

ShirkWork
Team Member B

The Shirking Dilemma
of Team Production in Natural Cooperative

An Illustsrating quote:

“When working each man for himself, these men were able to earn higher
wages at 3%; cents a ton than they could earn when they were paid 4%; cents a
ton on gang work ; and this again shows the great gain which results from
working according to even the most elementary of scientific principles.”
Principles of  Scientific Management, F. W. Taylor (1914: 76) [available at
google books] 

F. Solving the Team-Production Problem

i.  The possibility of creating better incentives for team production creates
an incentive for “formeteurs” to create organizations with artificial
reward systems. If they do so successfully, they may profit from creating
such organizations (firms, sports teams, clubs, etc.)

ii.  The game matrix below illustrates one possible solution to the shirking
or team production dilemma. 

iii.  Team production is assumed to be worthwhile, which implies that the
productivity of each member is increased by the efforts of the others. 

In the game above, which is referred to as the natural cooperative, the
group’s output is shared equally. 

iv.  In the game below, a formeteur has created an artificial reward structure
for his or her team. Each team member receives a reward (R) for work

and a penalty (P) for shirking that is independent of the efforts of other
team members. 

2-P, 2-P4-P, RShirk (A)

R, 4-PR, RWork (A)

ShirkWorkTeam Member A
Team Member B

Organizational Solution 
to the Shirking/Free Rider Dilemma

v.  Team members will avoid shirking if R > 4 - P and R > 2 - P.  Any
combination of rewards and penalties such that R + P > 4 is sufficient
to solve this intra-organizational rent-seeking problem. 

vi.  Any reward greater than 2 is sufficient to attract team members from
natural cooperatives. In order to be self sustaining the rewards can be
no greater than 3.

vii.  Person who establish organizations (formeteurs) will attempt to
solve such team production problems through artifical incentive
structures (rules for rewards and punishments) as long as penalties
greater than 2 are feasible. In that case a reward structure with 3>R>2,
can potentially yield profits for organizers.

G. If the organization succeeds, the artificial reward structure will increase in
team output. 

i.  In the illustration, the new rules condition rewards only on the
behavior of single team members and does so in a manner that aligns
the interests of individual team members with those of the organization.
“Productive” behavior is rewarded and “unproductive” behavior is
punished. 

ii.  If the reward or punishment is high enough, all team members work
(advance the organization’s interests) rather than shirk. In the illustrating
game matrix, an R>2 and P>2 are sufficient to solve the dilemma, and
to attract team members from the natural cooperative. 
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iii.  A reward equal to 2.5 for each person and punishment of 1.75 for
shirking, produces 6 units of output, and an organizational surplus of 1
unit of output for the formeteurs. (No one shirks in equilibrium.)

H. Organization may be said to adapt to changing circumstances, it does
so when its leaders changing the rules (usually at the margin) in a
manner that changes the equilibrium among its team members and/or that
between itself and other organizations.
That is to say, an organization’s rules are normally revised through time, as
circumstances and goals change.

I. A richer development of team production can be done using a production
function with economies of scale to develop the numbers for a 3x3 team
production game as done in class. 

i.  A dilemma is more likely to exist when teams simply share the value they
produce and leisure is also valuable. See the class notes for an example.

ii.  Such dilemmas can be reduced by paying people for their own specific
contribution to the output, although this is not always sufficient for a
solution.

iii.  As an exercise, create a production function that exhibits increasing
returns to scale (rising average product) and assume that leisure has
value. Use information from the production function and the benefits
from leisure to create payoffs in a game matrix. Find the equilibrium. Is
there a dilemma? Why or why not. Repeat with a different production
function and/or value for leisure.

Several Game Theory Appendices follow below for interested students.

They will not be covered on the exam, unless I also cover them in lecture. 

They are included for interested students--especially those thinking about
graduate school.

IV.  APPENDIX (1): A Few Other "Named Games"

A. Several other interesting games can also be created by changing the payoffs
of the two player two strategies games..  

i.  A zero sum game is a game in which the sum of the payoffs in each
cell is always zero.  In this game, every advantage realized by a player
comes at the expense of other players in the game.  
{ (Individuals with no training in economics seem to regard all economic

activities as zero sum games.  Of course, in most cases, exchange creates
value for each player.  Trade is a positive sum game.)

ii.  Coordination games  are games where the "diagonal" cells (top left or
bottom right) have the essentially identical payoffs( for example, 1,1)
which are greater than those of the off diagonal payoffs, (for example,
0,0). 
{ Here it is important that some norm be followed by both persons, and either

"on diagonal corner" is an equilibrium.  
{ (All drive on the left side of the road or all on the right have higher payoffs

than some drive on each side of the road. )

iii.  Assurance games are similar to coordination games. The off diagonal
payoffs for the "cooperative" strategy are equal to or below those of the
on diagonal cells (2, 0), however the upper left-hand "cooperative" cell
has a higher value to both players (3, 3) than the lower right-hand "do
nothing" cell, the original position (2, 2).
{  It will take some kind of guarantee or trust to generate moves from the

original lower right hand score to the higher upper left-hand cell. 
{ The trading game developed above is an assurance game.
{ Some game theorists have renamed the assurance game a stag hunt game

after a setting described by Rousseau in his  Discourse on Income Inequality
(1755)

"If it was a matter of hunting a deer, everyone well realized that he
must remain faithfully at his post; but if a hare happened to pass
within the reach of one of them, we cannot doubt that he would have
gone off in pursuit of it without scruple and, having caught his own
prey, he would have cared very little about having caused his
companions to lose theirs."

{ See Brian Skyrms' book on the Stag Hunt for a complete discussion. 
{ (Note that this translation suggests that the Stag Hunt is really a PD game

rather than an assurance game, at least if the starting point is two hunters at
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their stag hunting post. In the usual assurance game, the better equilibrium is,
of course, stable!)

iv.  The games of chicken is a game in which coordination is disastrous
rather than beneficial. 
{ As in the assurance game, one of the coordinated out comes is preferred to

the other. But in this case, the "off diagonal" strategies yield higher payoffs.
(1,1) > (0,0)

{ The off diagonal scores are generally higher, although one person does better
than the other as with (4,2) and (2,4).

{ (The payoffs can be adjusted so that mutual bravery yields an intermediate
payoff such as (3,3) ).

{ (Illustration, the old 1950s teenage drivers game of chicken on rural roads.)

V. APPENDIX (2): Other Applications of Game Matrices to Problems
of Interest to Economists and other Social Scientists

A. As noted above, a variety of social dilemma problems can be analyzing
Prisoner's Dilemma Games.

i.  One such game is the "Public Goods" or free rider problem.

ii.  In this game, a public service can be produced by either player alone by
paying the full cost of the service, or it can be jointly produced if each
pay's for half of the service.

iii.  (A pure public good is a good that is "perfectly shareable," a good
which once produced can be enjoyed by all in the community of
interest.)

iv.  Suppose that the value of the service is V to both Al and Bob, and the
cost of the service is C. 
{ If both players contribute to the cost of the public good, then each pays C/2.
{ If only one does, then that person pays the full cost, C.
{ If the public good is produced, then each player receives V.
{ This structure of contributions and benefits yields a game with the following

"net benefit" payoffs:

(0,0)4, -1Free Ride

-1,43,3ProvideAl

Free RidePovide
Bob

A Public Good Game

v.  Note that providing the service makes collective sense but not individual
sense, and the good is not produced. 
{ This is the classic Public Goods problem studied in Public Economics.
{ The Nash Equilibrium of the Public Goods game is mutual free riding, which

generates the (0,0) outcome
{ (Note that the payoffs have the same rank order as those in a PD game, but

that the motivation for these payoffs comes from the production process
assumed.)

vi.  This example shows how a common "real world" setting can be
represented using a game matrix.
{ Of course, in most cases, more than two persons will be involved in paying

for or producing the public good, and in most cases the good itself can be
produced at various levels.

{ Still, the 2x2 representation, captures essential features of the "free rider"
problem that must be confronted when thinking about the production of
public goods.

B. The same matrix can be modified slightly to show how rewards and
penalties can be used to solve such problems. 

i.  Suppose that free-riding can be observed, and that penalty P is imposed
on any one that free rides. 
{ The penalty could literally be a fine or a tax imposed on free riders.
{ The the penalty might also be non-pecuniary, as with losing the respect of

approval of one's friends or neighbors. 
{ Or, the penalty could be entirely internal, as when a person that violates his

or her private rules of conduct anticipates feeling guilty afterwards. 
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ii.  We now incorporate penalty P into the game matrix.

(-P, -P)V-P, V - CFree Ride

(A, B)
(V  -  C, V -P)

(A, B)
(V - C/2, V - C/2)ProvideAl

Free RidePovide
Bob

A Public Policy Solution 
to a  Public Good Game

iii.  Given V- C < 0 and 2V > C, there are penalties that will solve the free
rider problem. 
{ For example, any P such that V - C/2 > V - P and  P < V - C will do so.

iv.  Notice, for example, P = C/2 + 1 is sufficient to solve the problem.
{ Smaller penalties may also work such as P = (C+e)/2 with e> 0. 
{ (Recall that in the problem case, V is greater than C/2.)
{ Notice that the penalty has to be higher the larger is the cost of the public

good relative to value of the good.
{ (There are, of course, a wide variety of penalties that might solve PD games,

including ones that involve only "approval" or "shame," but also one that
involve the use of police and courts to impose fines or managers to reduce
future salaries.)  

v.  (A similar matrix can be used to illustrate essential features of what
economists call Externality Problems.)

C. Two Illustrations of the Regulatory Dilemmas of Neighboring
Governments

D. Race to the Bottom. Suppose that are two communities that are
interested in regulating some activity within their own territory.

E. Suppose further that regulations in each community affect each other's
prosperity, with the community with the "weakest" regulations being
somewhat more prosperous than the community with the stronger
community.

i.  To simply a bit, assume that there are just three types of regulations that
can be imposed: weak, medium, and strong regulations.

ii.  Suppose also that the joint ideal is "medium, medium"

iii.  However, the effect of local regulations (relative to that of the other
community implies that each community is a bit better off weakening its
regulations, given the other's regulation of the activity of interest.

6,65,82,9strong

8,57,74,8medium

A,B
9,2

A,B
8,4

A,B
6,6

A's env regs
weak

strongmediumweak

The Race to the Bottom Dilemma
Community B's environmental Regulations     

iv.  Such games have a Nash Equilibrium in Pure strategies that is not
Pareto Efficient.

v.  This "regulatory dilemma" is sometimes called the "Race to the Bottom"
because each government has an incentive to under regulate the
phenomena of interest (say air pollution).

vi.  Notice also that a voluntary agreement to move to (medium, medium)
may not solve the dilemma because it is not a Nash equilibrium. 
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{ It is for this reason that treaties may, for example, have no effect on
international air pollution.

{ Notice also that this problem can, however, be solved by penalizing weak
regulation in some sense. 

{ This may be difficult to arrange in an international setting although it can be
done within a federal system by higher levels of government..

F. NIMBY. Now suppose that the inter-community externality in the
opposite direction. That is to say, suppose that the community with the
weaker regulation attracts undesirable (say, noisy, ugly, or polluting
industries) into the community.

i.  Assume again that there are just three levels of regulation and that the
two community ideal is (medium, medium) as in the previous example.

ii.  In this case, each community is just a bit better off if it has somewhat
tougher regulations than its neighbor.

iii.  We can just slightly modify the payoffs of the above game to illustrate
the new problem.

6,68,59,2strong

5,87,78,4medium

A,B
2,9

A,B
4,8

A,B
6,6

A's env regs
weak

strongmediumweak

The Race to the Top Dilemma
NIMBY

Community B's environmental Regulations     

iv.  This game also has a Nash Equilibrium with dominant strategies that is
not Pareto Optimal.

v.  This regulatory dilemma is sometimes called the "race to the top" or
NIMBY (not in my backyard) problem.

VI. APPENDIX (3): An Illustration of the Essential  Mathemetics of
Nash Equilbria in Games with Continuous Strategy Options  

A. There are many settings in which players strategies are not discrete, but
rather lie along a continuum of some sort.  
{ Players on a team may work more or less.  
{ More or less of a public good may be provided.  

B. Such games can be represented mathematically by specifying a payoff (or
utility) function that characterizes each player's payoffs as a function of the
strategy choices of the players in the game of interest.

C. Consider, for example, a two-person lottery game played by two
persons. Both want to maximize their "expected" net earnings from
purchasing tickets. 

i.  The expected value of an event with outcomes 1, 2, i, ... N is Ve = 
PiVi, where Pi is the probability of event i, and Vi is the value of event i.
{ If Al purchases Na lottery tickets and Bob purchase Nb tickets, Al's expected

profit is  Rae = [Na / (Na + Nb) ]Y - Na C  where Y is the prize one and C is
the cost of a lottery ticket.

{ Similarly Bob's expected net benefit (profit)  is Rbe = [Nb / (Na + Nb) ]Y -
Nb C

ii.  Al's expected profit maximizing number of lottery tickets can be found
by differentiating Rae with respect to Na and setting the result equal to
zero.
{ dRae/dNa = {[1 / (Na + Nb) ] - [Na / (Na + Nb)2 ]}Y - C = 0 at Na*
{ Putting terms over the same denominator and adding C to each side yields:
{ [Na + Nb - Na]/(Na + Nb)2 = C/Y     or     Nb/(Na + Nb)2 = C/Y
{ Next we want to solve for Na
{ Nb = (Na + Nb)2 C/Y  or Nb(Y/C) = (Na + Nb)2  
{ which implies that (NbY/C)1/2 = Na + Nb
{ so Na* = - Nb + (NbY/C)1/2

iii.  This last function is sometimes called a best reply function. In this
case, it tells Al the expected profit maximizing number of lottery tickets
to purchase given any particular purchase by Bob.  
{ Note that Na* varies with Bob's purchase which implies that Al does not

have a dominant strategy.
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{ Note also that a best reply function can be derived for Bob, Nb* = - Na +
(NaY/C)1/2 

iv.  Note also that if both persons are simultaneously on their best reply
function, neither can change their strategy and improve their payoff
(remember that the best reply function for player i maximizes his or her
payoff, given the strategies adopted by all other players), as required for
the existence of a Nash equilibrium.

v.  Thus, the Nash equilibrium of this lottery game occurs at a point
where: Na* = - Nb* + (Nb*Y/C)1/2  and Nb* = - Na* + (Na*Y/C)1/2

{ To find the Na* and Nb* combination where both these conditions hold, one
can either substitute the equation describing Nb* in terms of Na into the Al's
best reply function and do a bit of algebra.

vi.  In a symmetric game (a game in which players have the same strategy
sets and payoff functions) there is normally a symmetric equilibrium. In
this case, the two best reply functions will intersect at a point where Na
= Nb.
{ At the symmetric lottery game's equilibrium: Na = - Na + (NaY/C)1/2  

or 2Na = (NaY/C)1/2

{ Squaring both sides, we have: 4Na2 = NaY/C  which implies that 4Na = Y/C
{ or Na** = Y/4C  and since Na = Nb at the symmetric Nash equilibrium, we

also have Nb** = Y/4C

vii.  Since each ticket costs C euros, so Al spends Na** C or Y/4 euros on
tickets. That is he spend exactly 1/4 of the prize money (if he wins) on
tickets. 
{ [The same is true for Bob, so it is clear that this particular lottery will not be a

"money maker" for its organizers.]

D. The lottery game can be generalized to think about a wide variety of games
in which one's odds of winning a contest depends upon how much time,
energy, wealth, etc. one invests in the game.

E. Common applications include the political rent-seeking games, originally
developed by Gordon Tullock, legal battles in court, research and
development contests by firms, warfare, car racing, grades on university
exams, etc..

F. The lottery game and its various applications can also be generalized to
take account of more than 2 players, and to include "technologies" where

the exponents on investments are subject to increasing or decreasing
returns.

G. It is surprisingly easy to generalize this game by, for example, including N
players rather than two.

i.  Let K represent the total investment of the N-1 players, then the
expected payoff of a "typical" player is:  
{ Rae = [Na / (Na + K) ]Y - Na C

ii.  Differentiating with respect to Na yields:
{ dRae/dNa = {[1 / (Na + K) ] - [Na / (Na +K)2 ]}Y - C = 0

iii.  Solving for Na, as above, yields:
{ Na* = - K + (KY/C)1/2

iv.  This equation is the best reply function of a typical player in the
present N person game. 

v.  To find the symmetric equilibrium, note that K = (N-1) Na, so:
{ Na* = - (N-1) + [(N-1)Na Y/C]1/2

vi.  solving for Na*, yields:
{ Na** = [(N-1)/ N2] (Y/C)

vii.  Note that when N = 2, as above,  Na** = (1/4) (Y/C) , as before.

viii.  The total expenditure on "rent seeking" is NC times this amount, or
(N-1)Y/N, and this expenditure approaches Y in the limit as N
approaches infinity. 

H. Different technologies for increasing one's chance of winning can
also be taken into account by assuming changing our assumptions about
investments in the game (Na) affect the probability of winning the prize.
For example we can take account of economies and diseconomies of scale
by changing from P =Na/(Na + K), to P = Nad/ ( Nid).

i.  The payoff function for a typical player now becomes:
{ Rae = [Nad/ ( Nid)]Y - Na C

ii.  Differentiating with respect to Na now yields:
{ dRae/dNa = {[dNad-1 / ( Nid) ] - Nad (dNad-1)  / ( Nid)2 }Y - C = 0
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iii.  To find the symmetric equilibrium, note that Na = Ni for all i = 1, 2, ....
N, so:
{ {[dNad-1 / (a) ] - Nad (dNad-1)  / (2a2) }Y - C = 0, or putting the

numerators over a common denominator and collecting a few terms:
{ {[dNNa2d-1 - dNa2d-1)]  / (2a2d) }Y - C = 0,  or
{ {[d (N-1)Na2d-1)]  / (2a2d) }Y - C = 0 

iv.  solving for Na*, yields the individual's number of tickets (level of
resources invested in the contest) at the symmetric Nash equilibrium:
{ Na** = [(N-1)/ N2] (dY/C)

v.  Note that when d=1 and N=2, as above,  Na** = (1/4) (Y/C) , as
before.
{ However, the total expenditure on "rent seeking" is again NC times this

amount, or d(N-1)Y/N. 
{ Note that total expenditures will now exceed Y, whenever d> (N-1)/N. 

I. To summarize:

i.  The more players are in the game, the less each spends.

ii.  However, the total spent rises with the number of players.

iii.  In games with constant returns (the classic contest function) the total
investment in the contest approaches the value of the prize (Y) as the
number of players approaches infinity.

iv.  Contests with increasing returns may have "super dissipation," where
more resources will be invested in the contest than the prize is worth.

v.  (Note that no player will routinely play such games. However, "no one"
playing is also not an equilibrium, so potential players may play mixed
participation strategies--more on that later in the course.)  

J. There are a surprisingly large number of applications of these
rent-seeking-lottery games. 
{ Essentially any contest in which additional resources increases the probability

of winning, or the fraction of the prize that is won, can be modeled with such
functions.

{ Indeed, a very large "contest" literature has emerged in the past ten or twenty
years that explores such functions.

{ To this point, the "Tullock" contest function has been most widely applied to
represent interest group politics, although it can be used to represent crime,
terrorism, etc. as noted above.

{ Note that dissipation--the cost of the "competition"--is an important
indicator of social welfare, particularly in contests that are "unproductive"
and therefore wholly redistributive.

K. Game theory can also be used to represent less concrete settings.
{ For example, payoff fuctions can be represented using abstract functions.
{ And, equilibrium strategies can be characterized using a bit of calculus.

L. Illustration: consider a symmetric game in which each player has the same strategy
set and the same payoff function. 

i.  Suppose there are just two players in the game, Al and Bob.  
{ Let the payoff of  player A be G1 = g(X1, X2)  and that of player B be G2 =

g(X2, X1) where X1 is the strategy to be chosen by player 1 and X2 is the
strategy chosen by player 2.

ii.  Each player in a Nash game attempts to maximize his payoff, given the strategy
chosen by the other.  
{ To find payoff maximizing strategy for player A, differentiate his payoff

function with respect to X1 and set the result equal to zero. 
{  The implicit function theorem implies that his or her best strategy X1* is a

function of the strategies of the other player X2, that is that X1* = x1(X2).
{ A similar reaction (or best reply) function can be found for the other player.

iii.  At the Nash equilibrium, both reaction curves intersect, so that               
                         X1** = x1(X2**) and X2** = x2(X1**) 

VII. Review Problems for those Interested in the Mathematical
Appendix

A. Let R be the "reward from mutual cooperation,"  T be the "temptation of
defecting from mutual cooperation,"  S be the "suckers payoff" if a
cooperator is exploited by a defector, and P be the "Punishment from
mutual defection."  Show that in a two person game, relative payoffs of
the ordinal ranking T > R > P > S are sufficient to generate a prisoner's
dilemma with mutual defection as the Nash equilibrium. 

B. Write down an assurance game and assume that the players initially find
themselves at the less desirable Nash Equilibrium. Show that your trust
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problem can be solved by subsidies of various kind. Explain how this
game differs from a PD game. Can subsidies also be used to solve a PD
game?

C. Suppose that the inverse demand curve for a good is P = 100 - Q and that
there are two producers.  Acme has a total cost curve equal to C = 5Q and
Apex has a total cost curve of C =10 Q.  Each firm controls its own
output.  Prices are determined by their combined production.  Characterize
the Cournot-Nash equilibrium to this game.

D. Suppose that there are two neighbors, Ms 1 and Ms 2, each of whom enjoy
playing their own music loudly enough to annoy the other.  Each
maximizes a utility function defined over other consumption, C, the
volume of their own noise, and that of their neighbor's (a bad). Ms 1's
utility function is U1 = C1

0.5
 N1

0.5 N2
-0.5.  Ms 2

has a similar utility function and each has a budget constraint of the form ,
Yi = Ci + Ni.

i.  Characterize each neighbor's "best reply" or "reaction" function, and
determine its slope.

ii.  What happens to neighbor 1's reaction function if his income rises?

iii.  Show the effect that a simultaneous increase in each neighbor's income
has on the Nash equilibrium of this game. 

iv.  Is there anything strange about this game?
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