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Chapter 2: Rationality, Optimization, and Shapes of Functions 

 

I.    Introduction: Modelling Individual Decisions 

A. As discussed in the Chapter 1, economics and the “rational choice” strands of other social sciences 

use “methodological individualism” as the conceptual foundation for their theories and models. 

This means that social phenomena such as markets and political systems are regarded to be joint 

consequences of individual decisions and actions.  

i. Thus, modelling social phenomena such as market networks begins with modelling individuals 

in various contexts—chiefly in their roles as consumers, input providers, investors, and owners 

of firms and other assets.  

ii. Individual decisions to participate in markets are made one at a time, and the great networks of 

exchange, production, and innovation that make up commercial societies are consequences of 

the decisions of many, many, independent decisions—coordinated by market prices, civil and 

criminal laws, and internalized norms. 

iii. Social phenomena do not emerge from a single decision but are  consequences of the decisions 

of many individuals.   

iv. For the most part, economics assumes that well-functioning markets have already emerged (as 

they had by the nineteenth century when neoclassical economics emerged) and attempts to 

understand how those markets operate—given that they emerged from the decisions of dozens, 

hundreds, thousands, millions or even billions of independent decisions by individuals and 

relatively small groups of individuals (firm owners). 

v. Thus, micro-economic analysis begins with the analysis of individual consumer and firm 

decisions. 

B. Economists generally assume that individuals are rational in the sense that they “optimize.” 

Optimization implies that individuals try to determine the “best way” (the optimal way) to pursue 

their interests.   

vi. Rational individuals use their resources (wealth, time, health, talent) to advance their own 

personal objectives as well as they know how.   

i. In consumer theory, the consumers maximize utility given their budget constraints.   

ii. In the theory of the firm, firms are assumed to maximize profit, given production technology, 

input prices, and market opportunities.   

iii. In rational choice based political theory, candidates are assumed to maximize votes given the 

positions of other candidates and the preferences of voters.  

iv. All these are settings where individuals optimize, given various constraints on the actions that 

might be undertaken.  Not all actions are feasible, but often a very large number are. 
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C. That individuals “optimize” has a surprising range of implications for markets and other social 

activities in which individuals participate.   

• Neoclassical economics is largely the result of more than a century of attempting to work 

out those implications.  

D. The optimizing model of humankind can be modeled or characterized with the mathematics of 

constrained optimization. That bit of mathematics provides the core of this course and is the main 

focus of the next chapter.  This chapter focuses most of its attention on assumptions that lie 

behind the mathematics of optimization. 

i. The assumptions include the “rationality” of individual decision making in the sense of internal 

consistency and efforts to optimize. 

ii. They also include assumption about the aims of individual (utility, income, profits) and the 

choice settings confronted (opportunity sets).  

E. To make the mathematics tractable and useful, a variety of assumptions about preferences and 

constraints are made. 

i. For example, it is usually assumed that individuals control things or action that are 

infinitesimally variable.  

• In principle, it assumes that individuals can allocate .0001 seconds to an activity or 

purchase .00001 ounces or grams of something at grocery stores.   

• One may not actually be able to do that in reality, but often little damage is done by that 

assumption.   

• And, that assumption allows calculus and algebra to be used to build models of individual 

choice and market equilibria. 

ii. When there are constraints—for the most part they are assumed to take the form of convex 

sets. 

• Convex sets are collections of points in which every line connecting two points in the set 

(a cord) includes only points that are also points in that set.   

• For example, the points inside a circle are a convex set, as are the points along a straight 

line.   

• A budget set, which tend to be triangular, is also a convex set. 

• A set that has a doughnut-shape or a figure-eight shape is not convex, because there are 

lines connecting two points within those sets that includes points outside those sets.  (If 

this is not obvious to you, take a minute to draw such sets and see.)  

• Similarly, the set of points that form the letters “A,” “B,” “C,” and most other letters are 

not convex, because if you connect points from one side to the other they often include 

points that are not part of those letters. 
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iii. It is also normally assumed that the objective  functions (utility, profits, output, etc.) are 

continuous function, strictly concave, and twice differentiable. 

• This assures that first and second derivatives can be calculated or at least characterized. 

• The first derivatives characterize concepts such as marginal benefit and marginal cost.  

• The second derivatives determine whether the marginal benefit curve is upward (or 

downward) sloping and whether the marginal cost curve is upward sloping (or downward 

sloping).  

II.    Three Types of Concavity 

A. A function is a mapping from one set (often Q or quanity in economics) into another set (such as net 

benefits, costs, benefits, utility, profits, revenue, etc.) 

B. Many of the mathematical properties of a given function can be deduced from its "shape."   

C. One of the most widely used characterizations of a function’s shape in economics is concavity.  

D. There are three notions of concavity used in economics, although in this course, only the first and 

second are used outside of this chapter. 

i. DEF: Strictly Concave:  function f is strictly concave iff     

 αf(X1) + (1-α)f(X2) < f(αX1 + (1-α)X2)      where 0 < α < 1. 

• Geometrically this means a function is strictly concave “if and only if” all the points on a 

line segment connecting any two points on a function always lies “beneath” the function 

of interest.  

• Strict Concavity is the assumption about functions that is most often used in this 

course. 

• A strictly concave function has at most one maximum, which allows us to characterize 

choices that are very specific—whether the choices are unconstrained or constrained by 

some convex set. 

ii. DEF: Concavity:  function f is concave iff       

 αf(X1) + (1-α)f(X2) ≤ f(αX1 + (1-α)X2)       where 0 < α < 1.  

• Geometrically this means that points on a cord (line segment) connecting any two points 

of a function always lies on or beneath the function of interest.  

• A straight line is concave, but not strictly concave. 

• Other strictly concave function are also concave. 

iii. DEF: Quasi-Concave: Concavity:  function f is quasi concave iff   

f(X1)  < f(αX1 + (1-α)X2))    where:        and f(X1) < f(X2) and 0 < α < 1.     

                              

• The values of a quasi-concave function always lies above the lower of the two end points 

of a cord connecting  any two points on the function. 
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• Any monotone increasing function is quasi-concave, but it is not necessarily concave or 

strictly concave, because it may increase at an increasing rate. 

 

Not Strictly Concave, Not
Concave, Not QuasiConcave

StrictlyConcave, Concave
and QuasiConcave

Figure 2.1 Concavity

Concave and QuaiConcave,
but not strictly concave

Quasi-Concave, but not
Concave nor Strictly Concave
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III.    Maxima and Minima of Functions 

A. Strictly concave functions have a number of useful properties in the context of "optimizing" behavior. 

i. A strictly concave function has at most one maximum. (Draw some pictures to see why.)  

ii. However, a concave function may have an infinite number of global maxima, but if there is 

more than one maximum, they make up a continuous linear interval.  (A horizontal line is 

concave, but not strictly concave.) 

B. DEF:  The global maximum of a function, f(x), is a value, f(x*), that exceeds all others over the 

entire range of the function ( e. g. for every neighborhood of x*). 

C. DEF: A local maximum of a function, f(x), has a value which exceeds those of other points 

within a finite neighborhood of x*.  That is, f( x*) is a local maximum if f(x*+e) < f(x*) and f(x*-e) 

< f(x*) for 0<e<E, for some E>0.   

• Note that  if a function has a global maximum, then that global maximum is also a local 

maximum. 

• However, because a function may have many local maxima, only one of those can be a 

global maximum. 

D. Derivatives of functions can be used to characterize sufficient conditions for concavity, strict 

concavity, and therefore also for global maxima and minima.  

i. A function is strictly concave if its first derivative(s) is positive, and its second derivative(s) is 

negative over its entire domain. 
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ii. A function is concave if its first derivative is positive, and its second derivative is less than zero 

over its entire domain. 

E. Functions may have local and global maxima, although most of the functions used in economic 

model-building are assumed to be strictly concave and so have at most one maximum (e.g. only 

one local maximum, which is also its global maximum). 

i. A function is at local maximum at point Q* if and only if (iff) its first derivative at Q* has the 

value zero and its second derivative is negative within a finite neighborhood around Q*. 

ii. A point, Q*, is the global maximum of function f(Q) if its first derivative has the value zero at 

Q* and its second derivative is negative throughout the domain of the function.  (Notice that 

in this case function f(Q) is strictly concave.)   

iii. Maxima are, as it turns out, important for constrained optimization.  

• With a particular domain, as with 0<Q<2, any function, f(Q) will have a highest value.  

o This would be the constrained optima or maximum for function f(Q) within the 

domain from 0 to 2.  It would be the “constrained” optimum. 

o Note that there may be more than one such optima, as when f(Q) is a horizontal 

straight line or a simple sine curve.   

• However, at least one maximum will always exist. This is simply a property of real 

numbers, within any set there will always be a largest value (number). 

iv. When the function is strictly concave and the constraint is a convex set (as with the interval 

example above, 0<Q<2) there will be a unique maximum (optimum).   

v. Thus, when a consumer has a constraint set that is convex (e.g. choose a “bundle” within a 

particular convex set such as budget set), and attempts to maximize a strictly concave objective 

function such as a  utility function or net benefit function, the unique maximum will be the 

rational consumer’s choice.  

• Virtually all of the models of consumer choice examined in this course are grounded in 

this very general property.   

• It is used, for example, to derive demand and supply curves from consumer and firm 

choices.  

vi. What we’ll mainly be doing in class and in the lecture notes is modeling a wide range of choice 

settings where the optimization model of rationality yields interesting and useful predictions 

about individual, firm, and market behavior.      
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IV.    Unconstrained and Constrained Optimization 

A. Several of the choice settings interest to economists can be regarded as instances of “unconstrained” 

optimization, because there are no bounds placed on the control variables to be determined by the 

decision maker’s choice—or if there are bounds they are relatively unimportant (non-binding).  

i. Firms, for example, are usually assumed to be able to pick any Q they want to when they 

choose a production level to maximize profits. 

ii. Consumers can pick any Q they want to maximize net benefits (consumer surplus). 

iii. Such choices can be easily modeled using calculus.  

• A firm’s choice can be regarded as that which sets marginal profits equal to zero, which 

requires marginal revenue to equal marginal cost, because maximizing  𝛱 = R(Q) -C(Q)  

requires setting d𝛱 /dQ = 0, which requires dR/dQ - dC/dQ = 0. 

• Similarly, a consumer that maximizes consumer surplus or net benefits (N) requires a 

quantity Q that sets marginal benefit to equal marginal cost, because maximizing N = 

B(Q) - C(Q) requires setting dN /dQ = 0, which requires dB/dQ - dC/dQ = 0. 

iv. Note that both these examples assume that the objective functions 𝛱 and N are assumed to be 

strictly concave and twice differentiable.   

• Both the profit and net benefit functions are assumed to have positive first derivatives in 

Q and negative second derivatives. 

B. However, many other economic choice settings involve constraints of one kind or another. 

i. For example, utility maximizing individuals are constrained by a "binding" budget constraint.  

• When the consumer is choosing how much of goods X1 and X2 to purchase, his or her 

choice of X1 affects how much X2 can be purchased. 

ii. In such cases, the above "unconstrained" maximizing (or minimizing) technique cannot be 

directly applied by either the individuals themselves or those attempting to model their 

behavior.  

• However, it is often possible to “substitute” the constraint(s) into the objective function 

in a manner that allows the above maximization technique to be used even when there 

are constraints. 

• Alternatively, one can use the Lagrangian technique (which will be developed in the next 

chapter).  

• [We will use which ever method is “easiest” when modeling the choice settings of interest 

in the course. This will often be the substitution method.] 

•  
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V.    A Digression: Linking the Geometry and Calculus of the Net-Benefit Maximizing 

Models  

A. In principle and intermediate micro-economics textbooks, the authors often use two letters to 

characterize a function rather than just one letter as in most of mathematics. This true of most 

geometric representation—e.g. when drawing “curves” or “lines” to illustrate the logic of some 

particular feature of choices in economic settings This is to help you remember what each term is.  

• However, this will not be routinely done in this course, although it will be done in this 

chapter to help students see the links between the geometry and particular mathematical 

ideas, and it will sometimes be done when introducing terms during the first part of the 

course.  

• Total benefits (TB) will mostly be written as B, Total cost (TC) will mostly be written as 

C, and total revenue (TR) will mostly be written as R. 

• Instead of marginal cost (MC), we will use either dC/dQ, or C’(Q), or CQ –which is to say 

we’ll be using the notational conventions of calculus and economic analysis that employ 

calculus. 

B. The change in benefits, costs, etc. with respect to quantity consumed or produced is generally 

called Marginal benefit, Marginal cost, etc. In this course, this is simply the derivative of the 

relevant total function with respect to Q.   

• This idea also can be applied to cost and benefit functions that are not “differentiable” 

because only discrete  units of a good are possible. A more general definition is the 

following. 

C. DEF: Marginal "X" is the change in Total "X" caused by a one unit change in quantity.  In cases 

in which the domain of X is continuous rather than discrete, it is the slope of the Total "X" curve.  

"X" ε {cost, benefit, profit, product, utility, revenue, etc.} 

• Important Geometric Property:  Total "X" can be calculated from a Marginal "X" curve by 

finding the area under the Marginal l "X" curve over the range of interest (often from 0 to 

some quantity Q).   This property allows us to determine consumer surplus and/or profit 

from a diagram of marginal cost and marginal revenue curves.   

• In terms of calculus, this is the integral of the first derivative of the relevant benefit, cost, 

utility, or production function, and returns the original function, except for an unknown 

constant, which often is 0 in economic applications.   

• (An exception to that rule, as well see later in the course, is the cost function, where the 

unknown constant is total fixed cost, which may be relevant for calculating short run 

profits.) 
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D. Using Marginal Benefits and Costs to Calculate Total Benefits and Costs   

i. Given the marginal cost and marginal benefit curves in Figure 1, it is possible to calculate the 

total cost of Q' and the total benefit of Q' .   

ii. These can be represented geometrically as areas under the curves of interest. TC(Q') = area II;   

TB(Q') = areas I + II .  

• Note that calculating these areas is equivalent to finding the definite integral of the MC 

or MB functions over the range of interest (about which we will say more later in the 

course). 

iii. One can calculate the net benefits of any quantity of the good by finding total benefit and 

total cost for that quantity, and subtracting TC from TB at the quantity.   

• Thus, the net benefit of output Q' is   B(Q') - C(Q') = area [I + II ] - area [ II ] = I. 

• This is equivalent to finding the integral of  B’(Q) – C’(Q) for the range of interest, in this 

case from 0 to Q’. 

Exercise/Puzzle. 

• Use Figure 1 to determine the areas that correspond to the total benefit, cost and net 

benefit at outputs Q’, Q* and Q''.  

Answers:  

• TB(Q’) = I+II and TC(Q’) = II, so NB(Q’) = (I+II)-(II) = I   

• (Recall that NB(Q’) is sometimes called the consumer surplus from Q’ units of the good.) 

MB 

MC 

I 

II 

III 

IV 

V 

VI 

$/Q 

Q 

Figure 1 

Q' Q* Q'' 
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• TB(Q*) = I + II + III + IV ,  TC(Q*) = II + IV   , so   NB(Q*) = I + III 

• TB(Q”) = I + II + III + IV + VI  ,  TC (Q”) = II + IV + V + VI , so  NB(Q”) = I + III 

- V 

E. If one attempts to maximize net benefits, it turns out that generally one will want to consume or 

produce at the point where marginal cost equals marginal benefit (at least in cases where Q is very 

divisible).  Note that this is demonstrated in the figure above. 

i. In the example above, note that NB(Q*) > NB(Q') and NB(Q*) > NB(Q"). 

• This is true for any quantity Q’ less than  Q* and any quantity Q” above Q* 

• Thus, net benefits are maximized at the quantity, usually denoted as Q*, where MB=MC. 

• When Q* is not possible for some reason, the same calculations can allow one to 

characterize choice between particular values of Q’ and Q” 

• Note, however, that sometimes one’s best choice does not always equate MB and MC. 

For example, a very common choice for most consumers is to choose Q* = 0.  (How 

many pink Cadillac’s do you own?) Show that MB doesn’t “usually” equal MC in this 

case. 

ii. In the usual case modeled, a net-benefit maximizing decision maker chooses a consumption 

level (Q*) such that their own marginal costs equal their own marginal benefits. They do this 

not because they care about "margins" but because this is how they maximize their own net 

benefits.   

• This characterization of net benefit maximizing decisions is quite general, and it can be 

used to model the behavior of both firm owners and consumers in a wide range of 

circumstances. 

• Moreover, the same calculus and geometry can be used to characterize demand and 

supply curves, as shown in the next chapter. 

 

Appendix: (Optional, mainly for students thinking about graduate school) Other 

Families of Functional Forms Sometimes Used by Economists: Cobb-Douglas, 

Homogeneous, and Homothetic Functions 

A. We will not often use the vocabulary and definitions in this section. It is included for students 

planning on or interested in graduate school in economics. 

B. For illustrating examples later in the course, we’ll be using explicit functional forms that are 

exponential in form, some of which are homogeneous of degree 1, but not all of them. 

C. Concrete or explicit functional forms are used in this class and in some economic research because 

(a) the results are easier to interpret and so serve as useful illustrations of more general models.  

(b) They are also used because they provide a theoretical reason for particular estimation methods. 
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i. For example, a utility function might be assumed to have an exponential form,    U = aXbYc ,   

where:  x  and y are quantities of two goods.   

ii. Cobb-Douglas functions are special cases of exponential forms where the exponents add up to 

one, as with b + c = 1.  

iii. Cobb Douglas functions are “homogeneous” of degree 1.  

D. DEF.  A function is said to be homogeneous of degree k, if and only if  whenever   

          Y = f(X)  , then    f(βX) = βk Y 
 

i. A production function that is homogenous of degree 1 exhibits constant returns to scale.  

Doubling all inputs, exactly doubles outputs. 

ii. Cobb-Douglas functions and linear functions through the origin (Y = ax ) are homogeneous of 

degree 1.  

iii. Occasionally, utility and production functions are assumed to be homothetic, a somewhat more 

general family of functions than homogeneous functions.  

E. DEF.  A homothetic function is a composite function of the form H = h(Q(a,b)) where Q is a 

homogeneous function and dH/dQ > 0 over the entire domain of h or dH/DQ < 0 of the entire 

domain of h.  (E.g. a homothetic function is a monotone increasing or decreasing transformation 

of a homogeneous function.) 

i. Not all homothetic functions are homogeneous. 

ii. Homothetic utility functions have linear income expansion paths.  

iii. Similarly, homothetic production functions have linear output expansion paths.  (The slopes of the 

isoquants are the same along any straight line through the origin.) 

iv. Assumptions of homogeneity and homotheticity make models and their implication less 

general than they would have been with assumptions of monotonicity, concavity, and strict 

concavity, but the clarity of the results is often felt to warrant such assumptions. 

 

Next chapter:  The Calculus of Optimization and economic relationships such as supply and 

demand and market equilibrium.   

 


