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I.    Rationality as Optimization  

A. This chapter shows how the mathematics of optimization can be used to model a variety of 

decisions in a variety of economic choice settings and to use those models to predict how 

individuals and markets tend to behave in those settings.   

i. It also characterizes three sets of mathematical tools for finding “optimal” values of a 

“control variable.”  The tools dealing with constrained optimization are not used much in 

this chapter, but are introduced and used to characterize a consumer choice, firm choice, and 

market equilibrium in chapter 4. 

ii. Together these make this chapter and the next the most important chapters in the 

course—they provide the mathematical foundations for most of the rest.  If you master this 

chapter and the next one, you’ll be in good shape for the rest of the course. And if not, you’ll 

have trouble with the rest, although you’ll have a good deal of additional practice in using 

the same or similar mathematic to analyze other choice settings during the rest of the 

course—which should help you to master them. 

B. The optimization model of rationality allows one to use calculus to model the choices made 

by individuals in virtually any circumstance, because essentially every choice setting involves 

optimizing: recognizing what is important (the objective) and what is possible (the 

constraints). What models generally do is attempt to isolate the essential features of a 

person’s objectives and constraints.  

iii. Objectives are normally characterized as functions that map actions of various kinds into 

numbers that are assumed to be correlated with one’s objectives.  In some cases, the 

objective may actually be a number such as profits or outputs of a good to be sold in a 

market, but in other cases the objective may be subjective and so not objectively measurable, 

as with utility. However, as long as one can reasonably assume that such unmeasurable 

objectives can be better advanced by some actions rather than others, we can use numbers 

(utility values in “utils”) to represent (model) the objectives sought (utility, happiness, good 

character, etc.) and the choices made. 

iv. The constraints are also represented in numerical terms. Again, some constraints such as a 

budget constraint are numerical.  One only has so much money to spend or so large of a 

credit line.  But others are not measurable or entirely measurable, such as the extent of one’s 

knowledge or ignorance. But, again if the terms more and less are meaningful (as with more 

ignorant or less ignorant), we can again represent such constraints using mappings into real 

numbers. 

v. A good deal of the progress in neoclassical economics has involved better representations of 

objectives and constraints. 
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vi. In addition, as the scope of optimization has become better recognized, the scope of 

neoclassical economics has been extended to provide insights into other fields of social and 

biological science.   

• Rational choice models can be used to characterize choices in a very broad range of 

circumstances, and several Nobel Prizes in economics have been awarded to the 

economists who first figured out how to do so, as with Gary Becker with respect to 

many areas of sociology (1992) and James Buchanan (1986) with respect to many 

areas of political science. 

• Other Nobel prizes have been awarded to economists who have argued or 

demonstrated that there are limits to what rational choice models can explain as with 

Herbert Simon (1978) and Daniel Kahneman (2002).   

vii. In this class we will be exploring the predictable consequences of rational choice models 

based on optimization. These models can explain a substantial amount of the behavior that 

we observe in markets and in other walks of life.  

C. There are more or less “abstract” and more or less “general” rational choice models that 

economists have worked out.  We’ll begin the course with relatively “concrete” models of 

human objectives and constraints and end the course by showing how similar results often 

can be found using more general models and mathematics. 

• For example, an abstract or general model of utility is an equation like: U = u(a, b, c, 

d, e) with function u having positive first derivatives for the control variables a, b, c, 

d, and e, negative second derivatives, and cross partial derivatives equal to or greater 

than zero. (These assumptions, as we’ll see later in the course assure that function u 

is strictly concave.) 

• “Concrete” or “explicit” functional forms of utility functions include equations such 

as U = a.25 + b.15 + c.15 +d.25 + e.125  or  U = axbycz with x, y, and z greater than 0 but 

with a sum that is less than 1. (Note that both these utility functions are “special 

cases” of the general utility function above, and both are also strictly concave.) 

i. The advantage of “concrete” functional forms is that it is often possible to solve for specific 

results and thereby make specific predictions. Some of these can be directly tested using 

econometrics (the portion of statistics used by economists). Their disadvantage is that, as 

special cases, one cannot be sure that any particular result will generalize to other plausible 

functional forms (many do not).  

ii. The first 2/3s of the course uses explicit or concrete functional forms for most of the 

models explored.   

• This is done because most students will find this easier, since concrete functional 

forms are used in most algebra and calculus classes.  
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• The last third will explore the extent to which similar results can be found using 

more general functions. 

 

II.    Supply and Demand as Implications of Unconstrained Net-Benefit 

Maximization 

A. As mentioned in chapter 2,  there are many settings in which one can model choices using 

results (or tools) from calculus that characterize unconstrained optimization.   

i. A bit of work was done in chapter 2  to show how calculus can be used to characterize 

choice settings that can be analyzed using the calculus of unconstrained optimization. 

Generally, they involve objective functions that are strictly concave.  

ii. We return to the-net-benefit maximizing model in this section of chapter 3 and use it as a 

basis for a theory of prices.  

• In chapter two, the purpose of the net-benefit maximizing model was to illustrates 

how one can construct a mathematical model of individual choice. 

• In this chapter its purpose is to use that model as to derive the demand for a good 

sold in a competitive market and use that model to characterize a market demand 

function when individuals in the market are very similar to one another.   

• We then use the net benefit maximizing model to characterize the decisions of a 

profit maximizing firm that produces and sells goods in a competitive market.  

• That model, in turn, can be used to characterize a market supply curve when 

suppliers are basically similar (have essentially the same cost functions).   

iii. Together market supply and demand curve can be used to characterize equilibrium (market-

clearing) prices and sales in that market. 

B. The end of this chapter focuses on choice settings in which constraints must be taken into 

account. Both sets of results (tools) from calculus—both unconstrained and constrained 

optimization—are widely used in economics and in subsets of other social sciences that rely 

upon rational choice models. 

• In the next chapter, we’ll use constrained optimization to develop somewhat richer 

models of the behavior of consumers and firms in competitive markets. 

C. A net-benefit maximizing model of individual demand.  

i. Recall that a consumer’s net benefits from purchasing Q units of the good can be written as:  

    N = b(Q) – c(Q)  

ii. Suppose that a typical or average consumer’s total benefits (in dollars) from using a good is 

B = aQ – Q2 , where Q is the quantity of the good consumed and a is greater than 0. 

Suppose also that the consumer can purchase the good for price P. 
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iii. In other words, suppose that we adopt an explicit functional form for benefits, B= aQ – Q2 

and for costs C = PQ.  This makes N = aQ-Q2 - PQ 

iv. Differentiating N with respect to Q and setting the result equal to zero characterizes the net-

benefit maximizing quantity of the good, which is the quantity that a net-benefit maximizer 

will purchase.  dN/dQ =  a - 2Q - P = 0   

• (This equation is often referred to as the first order condition. If function N has a 

maximum at some value of Q, that value will necessarily satisfy the first order 

condition. It will be  a value that makes the derivative of N equal to zero.)  

• Note that the first terms (a-2Q) are his or her marginal benefit and the last (P) is his 

or her marginal cost. 

• Note that we can solve the first order condition for Q as a function of P.  We can 

add 2Q to both sides of the equation to make  a -P = 2Q , dividing both sides by 2 

and shifting the Q to the righthand side yields Q* = (a-P)/2 

v. Since the quantity that satisfies this equation (usually denoted as Q*) is the “optimal” one for 

this individual given any particular price confronted, the function that describes Q* is his 

or her demand function for that good.  

• Q* = (a-P)/2  describes how much this consumer buys for any “given” price. 

vi. Solutions to the consumers net-benefit maximization problem for Q* thus characterize this 

consumer’s individual demand function (or curve) for the good being purchased.  This 

would be true of other functions as well.   

• Note that for the demand function that we’ve found, as price increase demand falls, 

so this consumer’s demand curve “slopes downward.” 

vii. We can use an individual’s demand curve as the basis for characterizing market demand, if 

the person modelled is “typical” or “average.”  For example, if there are N such individuals 

in the market, overall demand at any particular price will be N times as great or   

QD = NQ*= N(a – P)/2 

• (Note that if consumers are not identical or very similar, characterizing market 

demand requires adding up the demand functions for each individual consumer, 

rather than simply multiplying one demand curve by the number of consumers in 

the market.) 

D. A very similar net-benefit maximizing approach can be used to model the supply side 

of the market. 

i. Suppose that cost of production for a typical firm in the market is C = cQ2 , where c is 

greater than 0. Suppose also that the firm can sell as much as it wants to at prevailing market 
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price P.  Its net benefits are net revenues or profit (𝛱). This can be represented as total 

revenue less total cost,  𝛱 = PQ – cQ2.   

• (Note that profit is also a net benefit, where the firm owner’s total benefit (revenue) 

from selling Q units of the good is PQ and his or her total cost is cQ2.) 

ii. The optimal quantity to produce for sale is that which maximizes profit.  We can 

characterize that quantity by differentiating the profit function with respect to Q and setting 

the derivative equal to zero, which yields:    d 𝛱/dQ =  P – 2cQ = 0 

iii. To characterize this firm’s quantity supplied for any particular price, we need only solve the 

first order condition, P – 2cQ = 0,  for Q.   

• The algebraic steps for doing so are similar to that used above to characterize 

demand above: 

• Shift all the Q terms to the lefthand side of the equation and the others to the right 

hand side: 2cQ = P. 

• Divide both sides of the equation by 2c, which yields:   Q* = P/2c 

• This is the supply function for the good of interest. 

• Note that quantity produced and sold by this firm rises with the prevailing market 

price. 

iv. If there are M firms in the market with similar cost functions, then the market supply 

function (or curve) is simply M times that of the typical or average firm, which is 

• QS = MQ*= M P/2c 

• (Note that if firms are not identical or very similar, market supply requires adding up 

the supply functions of each firm, rather than simply multiplying one of the supply 

curves by the number of firms in the market.  The assumption that suppliers have 

similar cost functions is sometimes called the Marshallian assumption about 

competitive markets.) 

E. At the market equilibrium, price adjusts to set the quantity demanded [QD = N(a – P)/2] 

equal to the quantity supplied [QS = M P/2c].  

i. The price that does so is usually denoted as P* and it sets QD = QS or using our results from 

above,  N(a – P)/2= M P/2c 

• To find the equilibrium price, shift all the P terms to the lefthand side and the others 

to the right which yields:  -NP -MP/2c = -Na 

• Multiply both side by -1 and factor the lefthand side:    P(N+M/2c) = Na 

• Multiply both sides by 1/(N+M/2c) which yields: P* = Na/(N+M/2c) 
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• Which can also be written as P* = 2Nac /(2cN +M) 

ii. One can find the total quantity sold in equilibrium by substituting P* into either the demand 

curve or supply curve if one has made no math errors in determining P*.  

• (Think about this and explain why it doesn’t matter which function you use.) 

• I often use the supply curve, because it often has a simpler algebraic expression. 

iii. One can also undertake comparative statics on market price and quantity by taking 

derivatives of P* or Q* with respect to the terms of interest—or simply look at the result 

and use your mathematical intuition to see what the effects would be.   

• For example, if the number of firms increases, it is clear that the equilibrium price in 

this market would fall.  (Note that M appears only in the denominator, thus as M 

rises the term describing the equilibrium market price falls.)  

F. The particular form of the demand and supply curves derived, and the equilibrium prices will 

vary with the assumptions made about individual total benefit functions and firm total cost 

functions, but the basic logic and steps taken will be similar for all cases in which explicit 

functional forms are assumed for the consumer total benefit and firm total cost functions.   

• Towards the end of the course, we will show how to characterize market supply and 

demand curves and market equilibria while making only assumptions about the 

general shapes of those functions. 

i. As an exercise, change the explicit forms assumed and derive demand and supply curves and 

market  equilibrium.  For example, let a firm’s cost function be C = cQ.5 and/or let a typical 

consumer’s total benefit function be bQ.5 

• (Hint: such functional forms generally require taking somewhat odd “roots” to 

characterize their associated demand and supply curves. Note that a consumers 

demand curve is determined by his or her total benefit function and that a firm’s 

supply curve is determined it total cost function.) 

III.    Models of Market Behavior Using the Calculus of Constrained Optimization           

A. Although the calculus of unconstrained optimization can shed a good deal of light on 

decisions made by firms and consumers, there are many cases in which taking account of 

particular constraints can shed additional light on such decisions.  

• For example, taking account of a consumer’s budget constraint allows one to 

characterized tradeoffs in their decisions about how to allocate their budget among 

the goods that they might purchase.  

B. If constraints are important, then other methods for finding the “optimum” for consumers 

and firms are necessary.  Two of the most widely used results (tools) from calculus are the 

“substitution method” and the “Lagrangian method.”  
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• The substitution method can be used when the constraints can be incorporated 

into the objective function in a manner that creates an unconstrained optimization 

problem. (That method tends to focus the optimization along the edge(s) of the 

constraint(s) of interest, and often yields relatively straightforward first order 

conditions with easily understood economic implications. ) 

• The Lagrangian method involves “adding” the constraint (in a particular form) to 

the objective function in a manner that causes the derivatives of the new function to 

take account of the constraint.   

• We will spend less time on the Lagrangian methods in this course than most math-

econ textbooks do because it is rarely used in the economic literature these days. (It 

was very commonly used in the 1960s and 1970s.)  However, it turns out to be quite 

useful for working with multiplicative exponential functions, so we’ll be using it quite 

a bit at first. 

C. The Substitution Method.  In many cases, it is possible to “substitute” the constraint(s) 

into the objective function (the function being maximized) to create a new composite 

function that fully incorporates the effect of the constraint.   

i. For example, consider the separable utility function: U = x.5 + y.5  to be maximized subject to 

the budget constraint 100 = 10x + 5y.  (The consumer has 100 dollars to spend. Good x 

costs 10 $/unit and good y costs 5 $/unit.)  

ii. Notice that the constraint implies that we can write y as: y = [100 - 10x]/5 = 20 - 2x 

• Substituting that characterization of y into the objective function for y yields a new 

function now written entirely in terms of x:      U = x.5 + (20 - 2x ).5    

o This function accounts for the fact that every time one purchases a unit of x one 

has to reduce his or her consumption of y. 

o So, the new function includes the entire effect of the constraint on purchases of 

x. 

• Differentiating with respect to x allows the utility maximizing quantity of x to be 

characterized as:   

o    d[x.5 + (20 - 2x ).5  ]/dx = .5 x -.5  + .5(20-2x)-.5 (-2) 

o This derivative has the value zero at the constrained utility maximum. 

o Note that the first term is the marginal benefit in utility terms and the second 

term is the marginal opportunity cost of consuming X in utility terms (from 

reducing purchases of Y).   

• Setting the above expression equal to zero, moving the second term to the right, 

then squaring and solving for x yields: 

o 4x = 20 - 2x,  which can be simplified to  6x = 20,  which implies that  x* = 3.33 
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o Substituting x* back into the budget constraint yields a value for y*                        

y = 20 - 2(3.33) which implies that y* = 13.33 

• No other point on the budget constraint can generate higher utility for this 

consumer than that at (x*,y*) =(3.33,13.33). 

D. The Lagrangian Method.  The Lagrangian method is less intuitive than the substitution 

method.  It adds the constraint(s) (such as the budget constraint) to the objective function 

(such as a utility function) in a specific form. First, it alters the budget constraint so that it 

equal’s zero, such as 0 = W - P1X1 - P2X2. Then it multiplies that function by a term normally 

called the Lagrangian multiplier, which is usually denoted with the Greek letter lambda (λ). 

The resulting function is called the Lagrange function. 

i. To illustrate how to use the Lagrange method, we’ll apply it to the consumer choice problem 

worked out under “C.” Recall that the objective function was U = x.5 + y.5  and the budget 

constraint was 100 = 10x + 5y. 

• The Lagrange function is: L = x.5 + y.5  + λ(100-10x – 5y).   

o (The objective function is utility, x.5 + y.5 , and the constraint has been put a form 

so that it equals zero and then multiplied by lambda. 

• To optimize the Lagrange function, one takes (partial) derivatives with respect to all 

the control variables (in this case, the variables that the individual consumer controls, 

x and y) plus a derivative for lambda and set each derivative equal to zero. 

• Note that partial derivatives are simply derivatives of the function of interest (here 

the one characterizing L) that assume that all the other control variables are 

constants (do not change) while taking account of the changes induced by the 

variable being differentiated. This process is repeated for each control variable—and 

also for each Lagrangian multiplier. 

ii. The result is a system of equations referred to as the “first order” conditions. 

• dL/dx = .5x(.5-1) - 10λ = 0 

• dL/dy = .5y(.5-1) - 5 λ = 0 

• dL/d λ = 100-10x-5y = 0 

iii. All three of these conditions hold simultaneously, so the algebra used to solve for the utility 

maximizing level of x and y is a bit more complicated than in the previous illustrations.  One 

of the usual methods for solving for x and y involves eliminating the lambdas from the 

equations. 

• Add the negative of the lambda terms to both sides of the two equations that include 

lamda(s) to make 

o  .5x(.5-1) = 10λ 
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o .5y(.5-1) = 5 λ 

• Divide the top equation by the second to obtain: 

o (x/y)(.5-1) = 2 

o Which the exponent implies can be simplified to (y/x)(.5) = 2 

o Squaring both sides yields (y/x) = 4 

o Which implies that y = 4x 

• Substitute this expression for y into the last equation (the constraint) which yields 

o 100-10x-5(4x) = 100-30x = 0  

o Solving for x implies that x* = 100/30 = 3.33, 

o which given that y = 4x implies that y* =13.33 

• Note that this result is exactly the same as the one found using the substitution 

method. 

• In general, economists use which ever method is easiest (or possible) to apply for the 

constrained optimization problem being worked on. 

E. In this class, we’ll be mostly using whichever of the Substitution and Lagrangian methods is 

easiest in most cases—except initially when students are trying to understand both methods.  

• The Lagrange method is somewhat more flexible and general than the substitution 

method, but it is usually more difficult to generate clear solutions with it and 

somewhat more difficult to understand. 

IV.    Some Practice Problems  

A. Use the substitution method to:  

i. find the utility maximizing level of goods g and h  in the case where  

U = ga hb  and  10 = g + h,  

ii. Find the utility maximizing bundle of goods when the budget constraint is  20 = g + h  (i.e. 

if the wealth constraint is twice as high). 

iii. Repeat this problem using the Lagrangian method. 

B. Characterize the profit maximizing output of a firm when  𝛱 = PQ – aQ - Q2.  

C. Consider the demand function  Q = a + bP + cY,  with b < 0 and c > 0. 

• Find the slope of this demand function in the QxP plane. 

• Find the slope of this demand function in the QxY plane.  

• Is the associated revenue function (R=PQ) concave? strictly concave?   
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• (Hint, use the demand function to restate price as a function of quantity and then 

take the first and second derivatives of the revenue function with respect to Q.) 

• Characterize the profit maximizing output of this firm and discuss briefly the 

meaning of the various terms in your equation(s).  

 

V.    Appendix: A Few More Useful Ideas and Definitions from Calculus 

A. Some useful relationships, concepts, and definitions from and for Calculus 

i. Given Y = abcdX , the first derivative of Y with respect to X is dY/dX = abcd 

ii. Given Y = aXb , the first derivative of Y with respect to X is dY/dX = abXb-1 

o When b-1=-c < 0 then abXb-1 can be written as  ab/Xc   

o This is sometimes useful when using algebra to isolate all the X terms on one 

side of an equal’s sign. 

B. Def:  Function Y = f(X) is said to be continuous whenever the limit of f(X) approaches Y= 

f(Z) as X approaches Z. 

• Or alternatively, function Y = f(X)  is said to be continuous if for every point in the 

domain of X, and for any e >0,  there exists  d > 0,  such that      |f(X) - f(Z)|< e  

for all X satisfying |Z - X| < d.  

o That is to say, points only a finite distance from Z should generate function 

values within a finite distance of f(Z).   

o In fact, function f is continuous if for any finite distance e (epsilon) there exists  

d (delta) such that any value within delta of z generates a function value within 

epsilon of f(z).) 

o This condition assures that there are no “sudden” (instantaneous) jumps in the 

function and no holes in the function.  

o [ Note that Y = 1/X is not continuous at 0, because as one gets close to Zero Y 

increases by more and more, some of these increases will exceed the “d” chosen.]    

• Def: the limit of a function: function f is said to have a limit point y* at x* if and 

only if (iff) for every e > 0, there is a d > 0 such that |f(x) - y*| < e whenever |x - 

x*|<d.  

o If there is a real number y* satisfying this definition at x*, we the limit of f at x* 

exists and equals y*. 

o Note that this definition rules out the existence of different right hand and left 

hand limits.  (why?) 

• Def: function f is said to be differentiable if and only if (iff) for every x contained in 

set X the limit point of { [(f(x) - f(z)]/(x - z) } exists. 
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o Note that if f is differentiable, f is also continuous.  (why?) 

C. Within microeconomics, utility functions and production functions are generally assumed to be 

continuous and twice differentiable. 

i. Such assumptions clearly rule out some kinds of decision makers, just as the assumption that 

production possibility sets and opportunity sets are convex and compact rule out some kinds 

of choice settings.  

ii. These assumptions are made largely for "economic" rather than "empirical" reasons.   

• That is to say, generally it is felt that the benefits of more tractable models 

overwhelm the costs of reduced realism and narrower applicability.  

iii. However, this assumption should not always be taken for granted. There are a few cases in 

which continuous versions of the choice settings lead to empirically false predictions.  

• Clearly, such uncommon choice settings should not be entirely neglected.   

• When discrete aspects of the choice problem are, or may be, important,  various 

tools from set theory, integer programming,  geometry, and real analysis can still be 

applied. 

iv. However, for most choice settings of interest to economists, the assumption of continuity 

is approximately correct.  There may be a smallest piece of flour, sugar, gasoline, or sand, 

but they are pretty small! 

(Try to think of cases where the simplifying assumptions of continuity and convexity 

will generate predictions about behavior that are clearly wrong.) 

 


