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I. Rationality and Constrained Optimization   

A. This chapter shows how the mathematics of constrained optimization can be used to model 

economic choice settings similar to those of chapter 3, but with more aspects of consumer 

and producer choices taken into account.    

B. Applications of the calculus of constrained optimization show how economic models can be 

improved by including a richer model of rational choices, as they have been from the late 

nineteenth century onwards—although the core models developed in the previous chapter 

have not changed very much in the past 80 years.    

C. The constrained optimization conception of rationality allows one to use calculus to model the 

choices made in circumstances in which there are obvious constraints—such as budget 

constraints or technological ones—that limit was is feasible for the decision maker of interest. 

D. The process of building models of constrained optimization involves several step. (i) First, one 

has to characterize the goals of the decisionmaker (the objective function) and means available 

for realizing that objective (the decisionmaker’s control variables).  (ii) Then, one has to 

characterize what is possible (the feasible set). The feasible set is characterized by various 

constraints faced by individuals and organizations such as firms. Constraints include, for 

example, ones characterized by a consumer’s budget, his or her knowledge, the available 

technology for making and buying things and services. Constraints also include laws of various 

kinds that limit what can be done with the resources possessed by individuals and 

organizations, including criminal laws, civil laws, tax laws, safety laws, and so on.   

i. As mentioned in chapter 3, objectives are normally characterized as functions that map 

actions of various kinds into real numbers that are assumed to measure or be correlated 

with and individual’s or organization’s objectives (net benefits, profits, utility).    

ii. The constraints on one’s choices may or may not always be binding, but whenever they are 

binding (or likely to be binding), they effect choices through effects on the feasible domain 

of actions and outcomes.  In this lecture, we’ll only consider cases where the constraints 

are binding and representable with equations. 

• Some constraints such as a budget constraint are inherently numerical.  One only has 

so much money to spend or so large of a credit line, and prices are naturally real 

numbers.    

• Other constraints may not be entirely measurable, such as the extent of one’s 

knowledge or ignorance. But, if the terms “more” and “less” are meaningful (as with 

more or less ignorant), we can represent such constraints and the effects of such 

constraints (such as errors) using mappings into real numbers.  

• These numerical representations usually characterize constraints as equations, which 

together with an individual’s or group’s objective function(s) allows the calculus of 

constrained optimization to be used to characterize decisions and many market 

outcomes.  
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II. Supply and Demand as Implications of Constrained Optimization  

A. Chapter 3 developed the basic tools of constrained optimization from that calculus that we’ll 

be using in this chapter: the substitution method and the Lagrangian method.   

i. In chapter 3, it was demonstrated how those methods could be used to characterize how a 

utility maximizing individual’s allocation of his or her budget.  

ii. In this section of chapter 4, we’ll use a slightly more abstract version of that model of 

consumer choice to provide a richer basis for a theory of individual and market demand.   

iii. A somewhat similar approach can be used to characterize the cost functions of firms, 

which can be used to provide a richer theory of firm decisions and market supply.  

iv. Together these results can be used to provide a more complete model of the factors that 

determine prices in competitive markets. 

• Chapter 5 will show how these same results can be used to model the pricing and 

output decisions of firms in monopoly and other less than full competitive market 

settings.  

B. A constrained utility maximizing model of individual demand.   

i. Suppose that a typical or average consumer is allocating his or her budget between two 

goods, X1 and X2. Suppose that he or she has W dollars to spend and that the price of 

good X1 is P1 and the price of good X2 is P2. Assume that the consumer’s utility function is 

U = X1
aX2

b with 0<a<1 and 0<b<1.   

ii. This is a constrained optimization problem. Our consumer, who we’ll refer to as Al (short 

for Allan or Alice), wants to find the combination of X1 and X2 that maximizes his or her 

utility given her budget constraint, W =P1X1+P2X2.   

iii. Either the substitution or Lagrangian method can be used, but given an exponential utility 

function, the Lagrange method is often easier to apply, and so, we’ll use that method. 

(Such functional forms are rare cases in which the Lagrange method involves less 

complicated calculus and algebra than the substitution method.)   

iv. The first step is to form the Lagrangian equation. Recall that the Lagrangian function is 

formed by adding a constraint to the objective function (here the utility function) in a 

particular form. First one puts the constraint into a form that equals zero, and then 

multiplies that function by lambda. Next one adds this to the objective constraint 

generates the Lagrange function: L = X1
aX2

b +λ(W - P1X1 - P2X2).   

• Note that the first term is the objective function (the utility function) and the second 

is the constraint in a form equal to zero (from the budget constraint) multiplied by the 

Lagrange multiplier.  
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v. There are two control variables (the “things” that the chooser can change to increase or 

decrease values of their objective function), here purchases of X1 and X2, and one 

Lagrangian multiplier (λ), so there are three partial derivatives that need to be 

characterized and set equal to zero.   

• (The Lagrangian method can include more than one constraint, although this is not 

common in economic models. If there are several constraints, there are different 

Lagrange multipliers for each constraint.)  

vi. The three first order condition  (first derivatives set equal to zero) are:  

• dL/dX1 = aX1
a-1 X2

b – λP1 = 0  

• dL/dX2 = bX1
a X2

b-1 – λP2 = 0  

• dL/dλ = W - P1X1 - P2X2 = 0  

• (Note that partial derivatives are simply ordinary derivatives that assume that all the 

other control variables and parameters of the problem (such as exponents, wealth and 

prices) are constants.) 

• The main calculus formula to keep in mind here are if Y = aXb + c   

 then dY/dX = abXb-1   (Notice that the “c” disappears and the “a” is not 

affected by the derivative.) 

• When taking partial derivatives only the terms (or functions) with the relevant 

variables are of interest, the rest—including other terms that you’ll be taking 

derivatives of—are of the a, b, c variety.   Thus, for the partial derivative with 

respect to X1, the X2 terms are all analogous to the terms “a” or “c” in this rule 

from the calculus of one variable. 

vii. The solution is found in a manner similar to that used in the consumer allocation model 

developed towards the end of chapter 3—although this time, rather than a numerical 

solution, two demand functions are characterized.   

viii. Here is one set of algebraic steps that can be used to characterize those demand curves.   

• First shift the lambda terms in the first two “first order conditions” to the righthand 

side of the equal sign and then divide the first equation by the second. (One can also 

divide the second by the first if you wanted to.)   

• The first step yields:    aX1
a-1 X2

b = λP1    and  bX1
a X2

b-1 = λP2  

• Second, divide the first equation by the second to get: 

    

   ( aX1
a-1 X2

b / bX1
a X2

b-1 ) = λP1 / λP2  
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• Which simplifies to   ( aX2 / bX1) = P1 / P2  

▪ Recall from algebra that X-b = 1/Xb , that Xb/Xc = Xb-c , that  XbXc = Xb+c , and 

that [aXb]c = acXbc 

▪ All four of these algebraic relationships are very useful in working through these 

problems.  

ix. Suppose that we are interested in Al’s demand for X1.  In that case, we want to solve for       

Al’s ideal value of X1 as a function of prices, wealth, and other terms.  

• To do so we take the last line of the above and solve for X2 as a function of X1 and 

the other terms.  

• We then substitute that expression for X2 into the budget constraint for X2 (the third 

first order condition).  

• Multiplying both sides by bX1 and then dividing each by “a” yields:      

 X2 = (bP1 / aP2)X1  

• Substituting this for X2 in the budget constraint yields:          

 W - P1X1 - P2 [(bP1 / aP2)X1] = 0  

• Next, we solve for X1. This produces a function that characterizes Al’s ideal choice of 

X1, which we refer to as X1*, as a function of prices and wealth.  X1* is the quantity of 

X1 that maximizes Al’s utility given his or her utility function given any prices for the 

two goods and his or her wealth.   

Steps that allow you to isolate X1 are listed below. (You may use others; as long as the algebra is 

correct, you’ll generate the same or an equivalent result.)  

• W - P1X1 - [(b/a) P1X1] = 0  

• X1 (P1 + (b/a)P1] = W  

• X1 P1 (1 + b/a) = W  

• X1* = W / [P1 (1 + b/a)] = W / [P1 (a/a + b/a)]   

• X1* = W / [P1 ([a + b]/a)] = [a/(a+b)] W/P1  

• The last line is Al’s demand function for good X1:   X1* =  [a/(a+b)] W/P1  
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• Note that the amount that Al spends on X1 is P1X1* which is a constant fraction of 

his or her budget, [a/(a+b)] W , in this case.      

o How many units purchased depends on the price.   

o The quantity purchased is, in this case, the ideal fraction of one’s budget 

constraint [a/(a+b)] for purchases of X1 times one’s budget (W) divided by 

the current price of the good (P1).   

o This is one of the odd properties of exponential utility functions, although it 

tracks the demand for some goods fairly well in statistical studies.  

o The demand for the other good, X2, is very similar:     

     X2* =  [b/(a+b)] W/P2  

• Note that the demand for either good varies with the exponents of the utility function 

(tastes) and one’s budget (W) which may be thought of as one’s wealth or income.    

o As income rises, expenditures rise proportionately to the increase in income.  

A doubling of income, doubles expenditures.    

o All goods are normal goods if consumers have multiplicative exponential 

utility functions with positive exponents.  

• Note also that Al’s demand curve slopes downward in the price domain, as P1 increases, 

the quantity purchased falls.   

o All demand curves slope downward if consumers have multiplicative 

exponential utility functions with positive exponents.  

x.  If Al is the average individual or there are N such individuals in the market, the overall 

demand at any particular price will be N times as great as Al’s, or:    

  X1
D = N [a/(a+b)] W/P1  

• As in the simpler model of market demand developed in Chapter 3, if consumers are 

not identical or very similar, characterizing market demand requires adding up the 

demand functions for each individual consumer, rather than simply multiplying one 

demand curve by the number of consumers in the market.  

• In such more complicated cases,   X1
D = Σ X1j* with j = 1, 2 … N   

• In this class, we’ll mostly assume that we are modeling the “average consumer” and 

so simply maximize our result by the number of consumers, but this is not always the 

best approach.  There may, for example, be several distinct but different types of 

consumers.  
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C.  A very similar approach can be used to model the supply side of the market.  Unfortunately, 

the results are more somewhat more difficult to derive and more complex.  Nonetheless, the 

results cast useful light on the factors that influence market supply.  

i. Suppose that cost of production for a typical firm in the market is C = wL + rK where w 

is the cost of labor (L) and r is the cost of capital (K).   

ii. As we’ll see, the costs depend on factor prices (w and r) and the production function used 

to produce the products to be sold. Suppose also that the firm’s maximal output from the 

use of labor and capital is Q = LeKf, where both e and f are greater than 0, but less than 1.  

• Note that the “technology” of production, in principle, affects the functional form of 

the production function, which in this period is: Q = LeKf .   

▪ Technology (including both management and engineering) determines both the 

exponents and the fact that the production function has the multiplicative 

exponential form in this case. 

• That the exponents are less than 1 and greater than zero implies that the each factor 

of production exhibits diminishing marginal returns.  If their sum is less than 1, this 

implies that the overall production process does as well.    

o   If their sum is exactly 1, as in Cobb-Douglas production functions, then the 

overall production process exhibits constant returns to scale.  

iii. The firm’s cost function can be derived either by minimizing the cost of a given output or by 

maximizing the output achieved for a given cost.  Each of these approaches can be regarded 

as the “dual” of the other.    

• We’ll first use the maximizing output for a given cost approach, because this is 

similar to that used for deriving consumer demand and is, in some sense, the 

“natural” way to characterized a firm’s cost function. Unfortunately, the results are 

more difficult to derive and interpret than the solution to the dual problem—as we 

will see.    

o   The solutions obtained are similar to consumer problem above, in that they 

characterized a firm’s demand for inputs for a given overall expenditure on 

inputs, although the objective function that we are modelling at this point 

output or production (Q), rather than utility.  

• We can characterize the firms demand for inputs by using the production function 

as an objective function and the cost function as a constraint.  Again, the Lagrange 

approach is a bit easier, because the objective function is a multiplicative-

exponential function.  (But, as usual, the individual equations are more difficult to 

interpret than using the substitution method.)  Since L is begin used to characterize 
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the quantity of labor used in production, I use a “script L” as the name of the 

Lagrange function (L ).  

• The Lagrangian equation is   L = LeKf + λ(C - wL + rK)  

• As in the consumer choice model, there are 3 first order conditions, two with 

respect to the control variables (L and K) and one with respect to the Lagrangian 

multiplier.  (There would be more first order conditions if there were more control 

variables as with 2 kinds of labor or more constraints.) 

o dL/dL =  eLe-1Kf - λ(w) = 0  

dL/dL =  fLeKf-1 - λ(r) = 0  

dL/dλ =  (C - wL + rK) = 0  

• To find the input demands of the firm, we follow the same steps as in the previous 

consumer constrained optimization problems: shift the lambda terms to the 

righthand side of the equations and divide one equation by the other to generate:  

• eLe-1Kf/fLeKf-1 = w/r  

• Which simplifies to:     eK/fL = w/r  

• If we want the firm’s demand for labor we solve this equation for K and then 

substitute that result into the constraint (derivative of the lambda term) o K = (w/r) 

(f/e) L     

• so C = wL + r (w/r) (f/e) L   

• Reversing the sides and factoring yields:  

L (w + w(f/e)) = Lw(1+f/e) = C  

So,   L* = (C/w)(1/(1+f/e)) = [e/(f+e)] [C/w]  

• Notice that this expression looks just like the expression that we found for the 

consumer demand function, but in this case, it characterizes this firm’s demand for 

labor for a given expenditure on inputs (C).    

• A similar result can be obtained for the firms demand for capital.    

      K* = [f/(f+e)] [C/r]  
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• Notice also that the pattern of input demand is determined by the relative 

productivity of the inputs (as reflected in their respective exponents), the amount 

that the firm plans to spend on all of its inputs (C), and input prices (the wage rate 

(w) and the cost of capital (r)).  

iv. However, the cost function we need describes costs in terms of outputs.  What we have at 

this point is the ability to describe outputs in terms of expenditures on inputs.    

• If we know how much money is spent on all inputs, we also know how many of 

each of the inputs are employed. This allows us to determine how much output is 

produced using the production function.   

• This can be determined by substituting the ideal input quantities into the production 

function.  

o Recall that the firm’s output is   Q = LeKf  

• Our two input demand functions allow the firms output to written in terms of 

production costs as:  

Q = {[e/(f+e)] [C/w]}e {[f/(f+e)] [C/r]}f  

• Note that this characterizes output in terms of overall expenditures on inputs, their 

productivity (as characterized by the exponents) and input prices.  

• Note also that we can solve for C (the cost or expenditures on inputs) by factoring 

it out of the righthand side expression fairly easily  

o Q = Ce+f {[e/(f+e)] [1/w]}e {[f/(f+e)] [1/r]}f  

• This allows Cost (C) to be written as a function of output (Q), which is what we 

need for a total cost of production function.  

Ce+f = Q /{[e/(f+e)] [1/w]}e {[f/(f+e)] [1/r]}f  

C* = {Q /{[e/(f+e)] [1/w]}e {[f/(f+e)] [1/r]}f }1/(e+f)  

The above characterization of C* is the firm’s cost function.  

v. Alternatively, we can use the “dual” of the firm’s optimization problem to get at the 

cost function instead.  

• In some cases, this yields a cleaner and more direct result.   

• The dual choice problem requires us to minimize cost (expenditures on inputs) 

subject to producing a given output Q.   

vi. Essentially, the dual just reverses the objective function and constraint.    
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• The new Lagrangian function is:  

• L =  - wL + rK + λ(Q - LeKf)  

• Again there are 3 first order conditions, two with respect to the control variables (L 

and K), and one with respect to the Lagrangian multiplier.  The first two are very 

similar to those we derived before, but the last is quite different.  

o dL/dL =  w - λ(eLe-1Kf) = 0 o 

dL/dL =  r - λ(fLeKf-1) = 0 o 

dL/dλ =  (Q - LeKf) = 0  

• (I’ve again used a script L (L) for the Lagrangian equation, because L is being used 

for the quantity of labor employed producing the good of interest.) Notice that the 

only significant difference in the first order conditions is the derivative with respect 

to the Lagrangian multiplier, λ.  

• The same steps are undertaken as before, but in this case solutions will be in terms 

of output (Q) rather than expenditures on inputs (C).   

o Shifting the lambda term to the right and dividing yields:   w/r =  eK/fL   

o If we again focus on labor initially, we want to again specify capital in terms of 

labor, which is again   K* = (fw/er) L  

Substituting this into the production function and solving for L, again takes a few steps:  

o Q = LeKf  = Le[(fw/er) L]f o L can be factored out of the righthand expression 

Q = Le+f(fw/er)f   

o We can then solve for L* in terms of Q:   L* = [Q (er/fw)f ]1/e+f  

o Recall that (x/y)-e = (y/x)e , thus the ratio inside the brackets “flips” as one 

derives L*  

o This characterizes the demand for labor as a function of output, productivity 

(again indicated by the exponents) and the price of labor and capital (w and r).  

• We can solve for K* in a similar way.  

o Isolating the L (instead of K) yields:   w/r =  eK/fL  yields L = (e/f)K (r/w)  
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o Substituting this into the constraint yields          Q = LeKf  

= [(e/f)K (r/w)]e Kf o The K can be factored out   Q = Kf+e [(er/fw)]e 

o  Solving for K yields K* = [Q (fw/er)e ]1/f+e  

o This characterization of K* is the firm’s demand for capital as a function of 

output, input prices, and their productivities.  

• The cost function can now be written in terms of the optimal quantity of labor and 

capital for various quantities of output:  

o C = wL* + rK* = w [Q (er/fw)f ]1/e+f  + r [Q (fw/er)e ]1/f+e  

o Note that the first term is the firm’s expenditure on labor and the second is the 

firm’s expenditure on capital used in production in the optimal amounts for 

the output quantity of interest.  

o Note also that it is a simpler expression than the one derived the first way, 

although they should be mathematically equivalent as long as we’ve made no 

algebraic errors.  

• This is a much simpler, if somewhat less intuitive solution than the one solved 

directly.   

o Notice in both cases, production costs vary with technology (the size of the 

exponents) and input prices.    

o Costs clearly rise with input prices (recall that the exponents are less than 1) and 

costs tend to fall as the sum of the exponents fall.  

o (Note that both the first and second derivations of the firms total cost function 

have characterized long run total costs, because the firm has been assumed to 

be able to vary all of its inputs.)  

           We’ll use this simpler expression to derive the firm’s supply curve. 

    

• To further simply the notation, let’s make mL = (er/fw)f ,  mK = (fw/er)e ,  

 and α = 1/(f+e).   

 o This lets us write the cost function directly above as:      

     C = w (QmL) α + r (QmK) α  

o The replacement notations are for clusters of variables that do not change when 

we calculate profit maximizing outputs—but would change if wages, capital 

rental costs or technology change.  The simpler notation reduces the likelihood 
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of algebraic mistakes in deriving the supply curve.  After that is complete we 

can (and probably should) substitute the “real” expressions behind the three 

new terms back into the equation worked out.  

• The firm’s profit maximizing output is calculated in the same manner as in chapter 3.   

o Profit is total revenue (PQ) less total cost (now written as C = w (QmL) α + r 

(QmK) α ).  

o 𝛱 = PQ - w (QmL) α - r (QmK) α = PQ - wQ α (mL) α - rQ α (mK) α o 

Differentiating with respect to Q yields:  

o P -  α wQ α-1 (mL) α - α rQ α-1 (mK) α = 0   at Q*  

o The first term (P) is marginal revenue, the others are the firm’s marginal cost. 

The individual terms show the part of marginal cost attributable to labor costs 

and to capital costs.  

o (Note that we have derived long run total cost rather than short run marginal 

cost, because we are assuming that both labor and capital can be varied in the 

period of interest. So, this first order condition characterizes the firm’s long run 

profit maximizing output.) 

o (Short run cost and supply would be derived by holding the quantity of capital 

or some other input(s) constant, which would be quite a bit simpler in the two-

input production case.)   

• One can solve for Q* (the profit maximizing output) by shifting P to the righthand 

side, multiply both by negative 1 and factoring.  

• α wQ α-1 (mL) α + α rQ α-1 (mK) α = P  

• Q α-1 [α w (mL) α + α r (mK) α ] = P  

• Q α-1 = P /[α w (mL) α + α r (mK) α ]  

• Q* = { P /[α w (mL) α + α r (mK) α ]} 1/(α-1)  

• Notice that this firm’s long run supply curve is upward sloping in price and the 

quantity supplied at every price tends to fall as input prices rise (e.g. if either w or r 

increase—although fully determining this requires checking the derivatives of mL and 

mK to know for sure).  
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D. If there are M firms in the market with similar cost functions, then the market supply function 

(or curve) is simply M times that of the typical or average firm, which is  

• QS = MQ*= M { P /[α w (mL) α + α r (mK) α ]} 1/(α-1)  

(As before, if firms are not identical or very similar, market supply requires adding up 

the supply functions of each firm, rather than simply multiplying one of the supply 

curves by the number of firms in the market.  The assumption that suppliers have 

similar cost functions is sometimes called the Marshallian assumption about 

competitive markets.)  

E. At a competitive equilibrium for good 1 above (X1), price adjusts to set the quantity demanded 

of that good equal to its supply at that price.   

vi.  The algebraic method used to find the market clearing price is similar to that which we 

undertook with the simpler net-benefit maximizing model. We again want to find the price 

that sets demand equal to supply.   

i. Demand is: X1
D = N [a/(a+b)] W/P1  

ii. Supply is:  QS = M { P /[α w (mL) α + α r (mK) α ]} 1/(α-1)  

iii. To find the equilibrium price is again a matter of algebra.  We want to find P such that   

• N [a/(a+b)] W/P1 = M { P /[α w (mL) α + α r (mK) α ]} 1/(α-1)  

• To solve for the market clearing price, first factor out the P on the right  

• N [a/(a+b)] W/P1 = M P1/(α-1) { 1/[α w (mL) α + α r (mK) α ]} 1/(α-1)  

• Then multiply both sides by P  

• N [a/(a+b)] W = M P α/(α-1) { 1/[α w (mL) α + α r (mK) α ]} 1/(α-1)  

• Shift the P to left and divide to isolate P  

• P α/(α-1) = {N [a/(a+b)] W} / { M P α/(α-1) { 1/[α w (mL) α + α r (mK) α ]} 1/(α-1) }  

• Raise both sides to the (α-1)/α power.  

• P* = [{N [a/(a+b)] W} / { M P α/(α-1) { 1/[α w (mL) α + α r (mK) α ]} 1/(α-1) }](α-1)/α  

i. This is the equilibrium price or market clearing price of good X1.  

ii. One can find the total quantity sold in equilibrium (Q*) by substituting P* into either the 

demand curve or supply curve if one has made no math errors in determining P*. (Think 

about this, and explain why it doesn’t matter which function you use.)  
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iii. One can also undertake comparative statics on market price and quantity by taking 

derivatives of P* or Q* with respect to the terms of interest—such as consumer income or 

the cost of capital—or simply look at the result and use your mathematical intuition to see 

what the effects would be (as we did with the cost function above).    

• For example, if the number of firms increases, it is clear that the equilibrium price in 

this market would fall.  (Note that M appears only in the denominator, thus as M 

rises the term describing the equilibrium market price falls.)   

iv. The particular form of the demand and supply curves derived, and the 

equilibrium prices will vary with the assumptions made about individual utility 

functions and firm’s production function, but the basic logic and steps taken will be 

similar for all cases in which explicit functional forms are assumed for the consumer 

utility and firm production functions.    

• Towards the end of the course, we will show how to characterize market supply and 

demand curves and market equilibria, while making only assumptions about the 

general shapes of those functions.  (This, perhaps surprisingly, is much simpler 

although the comparative statics tend to be more complex.) 

• As an exercise, change the explicit forms assumed and derive demand and supply 

curves and market  equilibrium.  For example, let a firm’s production function be Q 

= L.8 + K.9  and/or let a typical consumer’s utility function be U = aX1
.7 + bX2

.9  

III. Some Useful Economic Implications of the Mathematical Results of this 

Chapter  

A. The point of the math in this chapter is to show how to develop more sophisticated models 

of demand and supply than possible with demand and supply diagrams (where one has to 

intuit the factors that cause demand and supply curves to shift, rather than derive them) and 

with simpler net-benefit maximizing models (that tend to lack natural places for relative 

prices and income in models of demand and/or that lack obvious places for input prices and 

technology in models of supply).    

• The above models have natural places for all these variables and also has plausible 

implications about their effects on market prices and outputs, effects that in 

principle can be tested empirically.  

• The results do not merely affirm some of our intuitions. It shows how the various 

factors (parameters of consumer and firm choices) interact to produce a market 

equilibrium.  

• In a principles of micro-economics course, shifts and supply and demand emerge 

because of claims made by one’s instructor or textbook.  
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• In this course, they shift because of the model developed, and the reason for such 

shifts is provided by the logic of mathematics rather than intuitive story telling.  

B. An additional use of such models is that they can be used to flesh out simpler models, as for 

example, by adding input prices directly into cost functions or income into demand functions 

based on net-benefit maximization.   

• That is to say, after you understand how the parts of a model fit together in a 

concrete functional form (here the multiplicative exponential form), one can 

incorporate them into both simpler and more abstract models in the proper way to 

capture some of their effects on individual decisions and market outcomes.  

C. In general, for your development as economists, it is more important to understand the logic 

behind the mathematics than to be able to exactly replicate it—although mathematical 

models will take up the largest part of the exams in this class. (This is after all a mathematical 

economics course.)  

• However, you should also note that the derivation above for market equilibrium is 

far too long and complex to place on an exam.  

• So, at most you will see pieces of it such as derive a firm’s demand for an input or 

derive an individual’s demand for a good (such as X1) using utility functions and a 

budget constraint.  

IV. Some Practice Problems    

A. Use the substitution method to:   

i. Characterize the utility maximizing level of goods g and h  in the case where   

U = ga hb  and  W = gPg + hPh   

ii. Repeat this problem using the Lagrangian method.  

B. Characterize the profit maximizing output of a firm when  𝛱 = PQ – aQ + Q2.   

C. Consider the demand function  QD = a + bP2 + cY2,  with b < 0 and c > 0.  

• Find the slope of this demand function in the QxP plane.  

• Find the slope of this demand function in the QxY plane.   

• Is the associated revenue function (R=PQ) concave? strictly concave?    

• (Hint, use the demand function to restate price as a function of quantity and 

then take the first and second derivatives of the revenue function with 

respect to Q.)    
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D. Use the production function  Q = aL.5 + bK.5 to (1) characterize the marginal product of 

labor and capital, (2) to characterize the cost function of a firm facing a price of w for labor 

and r for capital, and (3) to characterize the firm’s profit maximizing output.  

  


