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Decision Making When Outcomes Are Stochastic or Uncertain  

Topics: Expected Values and Expected Utility  

Applications:  theory of the firm, consumer  choice, criminal choices, economic regulation. 

I. Introduction: Uncertainty and Time in Decision Making 

A. In economics there are many choice settings in which decision makers confront problems that 

involve either or both uncertainties and long time horizons.  These settings differ from those we’ve 

previously explored where all relevant details about the choice setting were known, there was no 

uncertainty about the result, and the timing of consequences or choices were neglected.  Examples 

include: 

i. A firm's choice of output levels and production methods when input prices or output prices are 

uncertain, or regulations are imperfectly enforced. 

ii. Consumer choices to invest, take a vacation, or engage in other risky activities such as gambling, 

rock climbing, smoking, crime, etc.. 

iii. In the fields of public, environmental, and regulatory economics, there is the determination of 

the proper level of regulation, fine schedules, and enforcement efforts when the effects of the 

regulation depend on uncertain variables like the weather or future enforcement efforts.   

Indeed, one can argue that most choices involve uncertainties of various kinds. Not all "facts" 

and "relationships" are known or can be known with certainty. 

a. Many causal relationships are partly random. For example, many production costs depend on 

the weather (wind and temperatures). 

b. Other uncertainties arise because information is incomplete or imperfect. Various 

macroeconomic, political, and natural crises may be surprise events. The great recession of 

2008-10, the invasion of Ukraine, and the Covid Pandemic were all unanticipated by most 

decision makers. 

c. Together, such phenomena imply that the costs and benefits of alternatives are often 

uncertain or probabilistic in both the short and long term.  

iv. Moreover, many choice settings involve of benefits and costs that take place over relatively long 

periods of time, rather than simple one-shot consumer experiences.  

a. The benefits and costs of many capital purchases occur over many years 

b. The same tends to be true of investments in human capital, such as your investment in 

various college degrees at WVU. The benefits and costs of career choices span decades.  

c. Regulatory and constitutional choices often involve long term commitments with both 

uncertainties and long time horizons. For example, the issues associated with global warming 

span centuries or millennia. 

B. Neither uncertainty nor long time horizons make rational calculations or choices impossible, butthey 

do make such choices more difficult and more prone to errors of various kinds. 

 Chapter 6 provides an overview of the most widely used tools (mathematical models) that 

economists (and most other policy analysts) employ to analyze decisionmaking under 

uncertainty. Chapter 7 provides an overview of the most widely used tools (mathematical 

models) for intertemporal decisionmaking (sometimes called dynamic choice settings). 
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 Together these two sets of tools allow one to model and/or assess the costs and benefits of 

alternative economic policies in settings where those policy decisions have long term 

consequences that are, at least partly, uncertain. 

II. Decision Making under Uncertainty  

A. The economics of risk and uncertainty was first examined thoroughly in a book by Frank Knight 

(1921) with the title Risk Uncertainty and Profit.   

i. In that book he makes a distinction between risk (stochastic events in which a probability 

function may be accurately calculated) and uncertainty (stochastic events in which a 

probability function is not or cannot be accurately calculated). 

ii. He also examines how risk and uncertainty (in his senses) differ in their effects on markets.   

iii. Risks can be estimated and priced, and it will be redistributed among persons and firms so 

that the least risk averse bear larger risks than the most risk averse (because the sale and 

purchases of various forms of insurance).   

iv. Uncertainty, in contrast, cannot be truly estimated or priced, and thus it is the primary source 

of extra ordinary profits and losses in the economy. 

v. This distinction continues to play a role in theory, although it is not greatly emphasized in 

most discussions of decision making in stochastic circumstances.  Unless Knight is cited, the 

terms risk and uncertainty are usually used interchangeably and assumed to have the same 

meaning. 

vi. Nevertheless, Knight’s distinction is a useful one to keep in the back of one’s mind.  

B. As a rule, economists assume that either objective probabilities can be estimated and used as an aid 

for decisionmaking or that intuitive approximations are used in more or less the same way to think 

about uncertain possibilities. 

C. In many areas of choice, the benefits and costs of particular choices (or policies) are at least partly 

the consequence of chance.   

vii. The most common models of decisionmaking in settings of uncertainty are the expected 

utility and expected net benefit maximizing models. 

viii. Expected value, itself, is an idea taken from statistics and means the average result that 

would be expected from a series of “draws” from a stable random process of some kind.    

D. DEF:  The mathematical expected value of a set of possible outcomes, 1, 2, ... N with values V1, 

V2, ... VN and probabilities of occurrence P1, P2 , ... PN is 

𝐸(𝑉) =  ∑ 𝑃𝑖𝑉𝑖

𝑁

𝑖=1
 

i. Every probability function assigns probabilities to events (here events 1, 2, … N) such that 

the sum of the probabilities is 1.0.  (The probability that something will actually happen is 1, is 

completely certain.) 

• Every probability distribution has the property:  ΣPi = Pi ≥ 0 for all i  

• All possibilities, i, have positive probabilities of occurrence 1 ≥ Pi > 0.  

• All impossibilities, j, have a zero probability of occurring and so Pj = 0.  

• Every possibility is assigned a probability. 
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i. The mathematical expected value is the sum of the values of those possibilities ( here V1, 

V2 … VN ) times their probabilities of occurrence (here P1, P2, … PN). It represents the long-

term average value of the distribution of values. 

ii. The expected utility associated with  a probabilistic setting is calculated in a similar manner: 

                       

𝐸(𝑉) =  ∑ 𝑃𝑖𝑈(𝑣𝑖)
𝑁

𝑖=1
 

where the N "value possibilities" are now measured in benefit terms associated with the 

affected individuals. 

E. To use this formulae for expected value calculations, one has to assume that the outcomes of the 

“uncertain” events are finite, can be counted, can be listed, and probabilities assigned to them. 

i. This is not an unreasonable assumption in many circumstances and is a reasonable first 

approximation of many others. 

ii. Here, it bears noting that the probabilities assigned may be the result of careful empirical work 

(frequentist) or (Bayesian) intuitions about the likelihood of particular events that are updated as 

more evidence is gathered. 

• (Frank Knight’s Risk, Uncertainty and Profit argued that “risk” occurs when one can assign 

realistic probabilities to outcomes and “uncertainty” occurs when one cannot. He argued 

that true economic profits in perfectly competitive markets can only arise from 

“uncertainty” in perfectly competitive markets.) 

iii. Most economists and most economic models are quite willing to assume that all the possible 

outcomes are known and that probabilities can be assigned to them. 

(In most policy areas, however, the probabilities are themselves estimates that are updated as 

research, policies, or persuasive campaigns take place.) 

F. Illustration of an expected value calculation: the roll of a die 

i. Suppose that a single die is to be rolled.  The face that turns up on top is a random event.  

ii. Suppose that you will be paid a dollar amount equal to the number on the face that winds up on 

top. 

iii. Since the probability of a particular face winding up on top is 1/6 and the value of the outcomes 

are 1, 2, 3, 4, 5, 6,  arithmetic implies that the expected value of this game is $3.50 = (1)(1/6) + 

(2)(3.5) + (3)(1/6) + ......(6)(1/6) .  

a.    If you played the game dozens of time, your average payoff per roll would be 

approximately$3.50. 

b.    Note that the expected value of a single roll of a die is 3.5, a number that actually is 

impossible, rather than “expected” in the usual sense in ordinary English. 

c.    This is not always the case, but this example illustrates that the meaning of “expected 

value” is a technical one: long term average result. 

d.    There are many probability distributions in which the average value is also the mode, so 

it is also the most likely value to be observed, as with a normal distribution. iv. In 

most theoretical work benefits are calculated in "utility" terms.  

G. Expected utility calculations and risk aversion 
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i. Expected utility differs from expected value only in that a different “value” is being expected, 

namely the utility associated with a particular outcome or money value associated with an 

outcome.  

𝐸(𝑈(𝑉)) =  ∑ 𝑃𝑖 𝑈(𝑉𝑖)
𝑁

𝑖=1
 

• Utility functions that can be used to calculate expected utility values that properly rank 

alternative outcomes (according to expected utility) are called Von-Neumann 

Morgenstern utility functions.   

• Von-Neuman Morgenstern utility functions are all bounded and continuous. 

• Von-Neuman Morgenstern utility functions for particular individuals are also "unique" up 

to a linear transformation(and considered by some to be a form of cardinal utility). 

H. DEF:  An individual is said to be risk averse if the expected utility of some gamble or risk is less than 

the utility generated at the expected value (mean) of the variable that determines utility (here V).  

i. A risk averse person is one for whom the expected utility of a gamble (risky situation) is less 

than utility of the expected (mean) outcome, if the latter could be obtained with certainty. 

a.    In mathematical terms, a person is risk averse if and only if U(x)e < U(Xe) where X is a 

random event and Xe is its expected value. 

b.    That is to say, when: U(x)e > U(Xe) 

c.    Note that this implies that any benefit or utility function that is strictly concave 

with respect to income, exhibits risk aversion.   

d.    (Why?  Because expected utilities are convex combinations of utilities. Draw a one-

dimensional illustration.) 

ii. A risk neutral individual is one for whom the expected utility of a gamble (risky situation) and 

utility of the expected (mean) outcome are the same. 

U(x)e = U(Xe) 

iii. A risk preferring individual is one for whom the expected utility of a gamble is greater than the 

utility of the expected (mean) outcome. 

 U(x)e > U(Xe) 

iv. The degree of risk aversion is often measured using the Arrow-Pratt  measure of (absolute) risk 

aversion:  r(Y) = - U"(Y)/U'(Y) ] 

I. The utility Functions that imply risk-averse behavior are all strictly concave, as illustrated below. 

i. The figure below illustrates a choice setting in which an individual is risk averse and facing a 

risky environment in which either an outcome with the value V1 or another outcome with the 

value V2 will occur.  The individual cannot influence which outcome it will be, but knows that 

the probability of V1 is P, which implies that the probability that V2 is (1-P) (Recall that that 

the probabilities for the only two possible events has to add up to one.)  

ii. Lets refer to the individual as Al.  Al’s utility function is strictly concave, which means that a 

cord connecting any two points on it lies below the utility function (except for the two points 

used as end points, which by definition are not part of the cord).  

iii. Note that if we consider the expected utility of this choice setting it can be written as  
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iv. Assume that Al confronts an uncertain environment in which V1 occurs with probability P 

and V2 occurs with probability (1-P)  Al’s expected utility in that case is: 

• Ue =PU(V1) + (1-P)U(V2)  

• As P increases from 0 to 1, the expected utilities trace out the cord between U(V1) and 

U(V2) and so will be below the utility function if it is strictly concave.  

• (Recall the definition of strict concavity in Chapter 2 using alpha.) 

• It is also the case that a sufficient condition for concavity in this case is that Al’s utility 

function has a positive first derivative for V and a negative second derivative for V.  

• In other words, Al’s utility function is concave if it exhibits diminishing marginal returns 

from V. 

• The expected value of V is Ve = PV1 + (1-P)V2  

• Note that if U is strictly concave then U(Ve) > PU(V1) + (1-P)U(V2) 

• Note that this looks just like the definition for concavity except that we’ve substitute “P” 

for “α”. 

• This is shown in the diagram below for a probability P approximately equal to 0.5, but it 

would be  true for all probabilities 0< P < 1 and all strictly concave utility functions. 

 

V1 V2V
ind

P U(V ) + (1-P)U(V )1 2

U(V )1

V
e

}

Risk Premeum

U(V )
2

U(V )
e

V  = PV  + (1-P)V
e

1 2

Expected Utility, Risk Aversion, and Risk Premiums

U(V)

 

•  

• This diagram can also be used to determine how much an individual would be willing to 

pay to have a certain payoff rather than face a risky or uncertain future. 

• This is done by looking at the certain outcome that a person would be equivalent in their 

mind to the risky event.  
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• If we go to the left from the expected utility associated the two probabilistic outcomes 

over to the utility function and then down to the horizontal axis we find the value (labeled 

Vind) that Al would find equivalent to the risky one faced. (Vind is the certain outcome that 

generates the same expected utility as the risky one faced.)   

• The difference in values, Ve – Vind, (assuming that the values are in money terms) is the 

highest price that Al would pay to avoid the risk. 

• It is also the lowest value that Al would accept to bear the risky environment shown rather 

than have outcome Vind with certainty.  

• That difference is called Al’s risk premium for this “gamble.” Al would accept the gamble 

(risky environment) rather than Vind only if the expected value of the payoff is at least that 

much greater than Vind.   

III. Applications: Expected Benefits Maximization and Uncertain Product Quality 

i. Suppose that Al is considering purchasing some produce from a farm and knows that some of 

the produce will be of high quality (H) and some will be of low quality (L) but either has to 

choose blindly (by ordering a particular number of units from the farm or pulling them out of 

a box) or simply can’t tell the difference between the two types or produce at the time of 

purchase, as is true of many types of produce (corn, potatoes, tomatoes, squash, etc)..   

• Suppose that the probability of high quality is F and that price per unit is simply P 

• Suppose that the benefits of high-quality units is B(Q, H) and the benefits from quality 

units is B(Q, L) where  B(Q,H) > B(Q,L) for every Q. 

• How many units will Al purchase? .   

ii. Al’s expected net benefit from purchasing produce is expected benefits less expected costs: 

• Ne = FB(Q,H) + (1-F)B(Q,L) - PQ  

• To find Q*, differentiate Ne with respect to Q and set the result equal to zero. 

• F (dBH/dQ + (1-F)(dBL/dQ) – P = 0 

• The first two terms of the expected marginal benefit of the produce and the last is its 

marginal cost.  

iii. To find a specific value we would need to use concrete functional forms for the two benefit 

functions, as with BH =HQ.5. and BL =LQ.5, with H>L, in which case our first order condition 

is: 

• .5FH/Q.5  + .5(1-F)L/Q.5 = P  

• Multiplying both sides by 2Q.5 yields HF + L(1-F) = 2PQ.5 

• Which implies that Q* = [HF + L(1-F)]2/4P2 

• The quantity Al purchases rises with F (the probability of the high-quality type) and with 

H (an indication of the quality of the high-quality type) and falls as L increases or price 

increases. 

IV. Applications: Expected Values and the Logic of Crime and Punishment 

i. The economic analysis of crime derives from a classic paper written by Gary Becker, who 

subsequently won a Nobel prize in economics.  In that paper, and in many others published 

since then, a criminal is modeled as a rational agent interested in maximizing his EXPECTED 

income or utility, given some probability of punishment. 
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ii. This type of model can be used to model theft and violations of other laws. 

• In the real world, criminal laws are only imperfectly enforced, and both criminals and 

ordinary persons who occasionally think about violating a law or two know this. 

• For example, a net income maximizing criminal would maximize an expected function like 

𝛱e = PQ – cQ2 – p(Q)F  where Q is the number of crimes (thefts), price is the average 

price received by “fencing” the stolen goods, p(Q) is a probability function describing the 

way that that the probability of being caught and convicted varies with the number of 

crimes and F is the financial penalty assessed (or if jail time is spent, the opportunity cost 

of the time spent in jail and any subsequent losses in earnings). 

• The rational theft chooses Q* such that 𝛱e
Q = 0, which in this case requires Q* to satisfy  

P-2cQ – pQF = 0  or P = 2cQ + pQF   (set  the marginal revenue from theft equal to its 

expected marginal cost, which is not known with certainty).   

• Let’s give the probability function a concrete form as with: p = aQ2 then pQ = 2aQ and the 

above first order condition becomes P-2cQ – 2aQF = 0  or P= 2cQ + 2aQF, which can 

be solved for Q. 

• P = Q(2c +2aF) → Q* = P/(2c + 2aF) 

• Note that this implies that the rational criminal responds to incentives, his or her crime 

rate falls as the probability of being caught and convicted rises (e.g. with 2a), as the fine 

increases, and as the marginal cost of theft increases.  

• Note also that there are tradeoffs between the size of the fine and the probability that a 

criminal is caught in terms of their overall effect on the criminal. 

• (This model provides a short form of Gary Becker’s classic 1968 paper on crime and 

punishment.) 

iii. Many other examples from law and economics can also similarly modelled. One does not have 

to be a more or less professional criminal for this logic to apply.   

• One can think of choices to drive faster than the speed limit on a highway or to park 

without putting money in a parking meter, or to trespass on a neighbor’s property, fail to 

report some income on one’s taxes, and so on in much the same manner. 

V. Applications: Expected Values and the Effects of Regulation 

i. One can also use this type of model to model the effects of economic regulation. 

• For example, in the area of environmental regulations, firms will take account of their 

overall net benefits from pollution including both cost savings and anticipated regulatory 

fines when choosing their production methods. 

• In the absence of fines or fees for pollution and in the absence of enforcement of fines 

greater than 0, firms will choose their production methods to minimize their production 

costs—as in the models developed in the first part of the course (prior to the midterm).   

• (This does not necessarily mean that firms will pay no attention to air or water pollution, 

but they will do so only insofar as it affects the firm’s expected profit through productivity 

and cost effects. Air or water quality that affects the productivity of the firm’s workforce will be 

taken account of, but not spillovers on others outside the firm.) 

ii. In the real world, regulations are only imperfectly enforced, and firms know this.   
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• Consequently, it is not simply the magnitude of the fine or penalty schedule that affects a 

firm's decision to "pollute illegally or not," but also the probability that a person that 

violates the law will be caught, convicted and punished.  

• Analyzing regulatory law and its enforcement on a firm's choice of production method and 

output level requires taking account of both the "expected cost" and "expected marginal 

cost" of any fines or penalties that might be associated with its production and output 

decisions. 

• (In addition, firms might face a loss of reputation and therefore reduced demand for their 

products if they are found guilty of violating regulatory law, but that effect will be ignored 

or assumed to be part of the fine.) 

iii. Consider a case in which production methods are fixed and output is regulated—which is the 

easiest case to model. 

• In a regulatory environment with fines, a pragmatic firm's expected profits equal its 

total revenues less its production costs less its expected fines:  𝛱 = R - C - Fe  where 

Fe = PF  

• Suppose that Acme’s output is sold in a competitive market, its cost function is C=cQ2wr 

and that its expected fine is the probability of being caught and convicted, which increases 

with output in excess of the regulatory limit, p(Q-QR) and a fine schedule that increases 

with the extent of the violation f(Q-QR) for Q> QR. 

• 𝛱e = PQ – cQ2wr – p(Q-QR)f(Q-QR) 

• To make the functional form a bit more concrete, let us assume that P(Q-QR) = a(Q-QR) 

and f(Q-QR) = b(Q-QR).  In this case, Acme’s expected profits are: 

• 𝛱e = PQ – cQ2wr – a(QR-Q)2 b(QR-Q) = PQ – cQ2wr – ab(Q-QR)2 

• Assume that the regulatory constraint is binding on Acme, and so it will take the expected 

fine schedule into account when making its output decision.  Its expected profit 

maximizing output can be characterized by differentiating the above function with respect 

to Q, which is a bit more complex than usual because of the “Q-QR” terms. 

• 𝛱e
Q = P – 2cQwr – 2ab(Q-QR) = 0 

iv. This can be solved for Q* . First, shift the Q terms to the left side of the equal sign: 

• P = 2cQwr + 2ab(Q-QR) = Q(2cwr + 2ab) – 2abQR 

• Adding 2abQR and dividing yields: 

• Q* = (P+2abQR)/(2cwr + 2ab) 

• This is Acme’s supply function in the regulatory environment modeled. 

v. Note that its output now varies with the regulatory standard (QR) its input costs (w and r) and 

parameters of the probability of being fined and fine schedules (a and b). 

• Acme’s output declines as input prices and the expected fines increase (w, r, a, or b 

increase) and increases as the regulatory threshold (QR) increases. 

•  

• (Another possible output is simply QR, but this cannot be modeled with calculus because 

of a discontinuity in the expected cost function at that quantity. See below.)  
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A. The diagram to the left illustrates Acme’s 

decision in this type of setting (with somewhat 

simpler probability and fine schedules).   

B. For students that have had public economics, 

note the similarities between Pigovian taxes 

and optimal enforcement with fines.  

If the regulation attempts solve an externality 

problem and achieve Pareto efficiency, Q**, 

then the smallest fine sufficient to induce the 

target Q** has the same expected value as a 

Pigovian tax at Q** (with QR ≤ Q**).  The 

expected fine should equal the expected 

marginal damages done by the Q**th unit of 

output. 

C. Note that there is always policy-tradeoff 

between the probability of conviction and the 

optimal level of punishment. [ Recall that the 

expected fine is Fe = PF ] 

i. The larger the fine, the smaller the 

probability of capture can be to 

generate the same effect on 

individuals. 

ii. The larger is the probability the 

smaller the fine can be and still have 

the same effect. 

a.    The effect is determined by the expected fine, PF, in this case.  

b.    The probability that an illegal activity is detected and punished varies with the resources 

used to enforce the law and the flagrancy of the violation, so the probability of being 

caught and punished tends to vary with law enforcement budgets and the size of the 

violation.  

c.    The politics of enforcement and penalties are partly determined by error rates in 

detecting criminal activities--sometimes the wrong person is singled out for punishment.  

• Puzzle. Given this, how would you pick the appropriate punishment for speeding? for 

theft? For murder? etc.   

• Puzzle. How would the relative importance of the probability of detection and the 

expected fine be affected by the process of a jury trial and a long delay between being 

detected and being fined? (Some ideas for doing so are provided in the next chapter.) 

• Puzzle: Write down an expected profit function for a firm facing a fine schedule that is 

imperfectly enforced, but where the fine increases as Q exceeds Q legal. Find the first 

order conditions and compare them to the above diagrams. 

• Puzzle: draw examples of a perfectly enforced and imperfectly enforced  "fixed fine 

schedule."  (Such fines do not affect expected marginal costs.) Compare your graph with 

the mathematics of expected profit maximization in this case. Are such fines always 

irrelevant? 

Output 

MC 

MR 

Effect of an Efficient Expected Fine Schedule 
On Firm Output (fine varies with output, so MFe > 0 ) 

Q* Qlegal 

$/Q 

MC + MFe (marginal production cost s 
plus marginal  expected fines) 

Output 

MC 

MR 

MC + MF (expected 

Effect of an Inefficient Expected Fine Schedule 
On Firm Output (fine varies with output, so MFe > 0 ) 

Q* Qlegal 

$/Q 
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•  

VI. Optional Appendix: expected values with continuous probability functions 

A. The above is developed for cases in which the stochastic factor(s) is (are) take only discrete such as 

the value generated when rolling dice or yes/no types of outcomes, such as being fined or not for 

violating a law or regulation.   

B. Continuous cases—where the domain of the probability density function is continuous rather than a 

discrete function (as in the case of rolls of a die) can be represented with integrals.   

C. Given f(𝛱|Q) being the conditional probability that a particular profit level is realized when output 

Q is produced, expected profits can be written as an integral of the following sort. 

• Π𝑒 = ∫ Πf(Π|Q)  𝑑Π
+∞

−∞
  

• The optimal quantity of output that maximizes expected profits in this case is the one that 

sets the following expression equal to zero. 

• Π𝑄
𝑒 = ∫ Πf(Π|Q)𝑄  𝑑Π

+∞

−∞
= 0 

• where subscripts indicate derivatives with respect to the variables subscripted. 

 

• Note that the integrals are (usually) just carried forward and the initial total variables 

integrated are replaced with their relevant marginal values.  (The integral written above is 

the expected (or average) marginal profit associated with output Q, which is zero at the 

expected profit maximizing output.) 

• Note also that the domain of the integral is determined by the terms integrated, which in 

most expected value cases is determined by that of the probability density function. 

Density functions such as the normal distribution have unbounded domains, whereas the 

uniform distribution usually has a bounded domain. 

• One uses the term “probability density function” (pdf) rather than “probability function” 

here, because probabilities are associated with integrals of (areas under) the density 

function. Thus, the total area under both a conditional and unconditional probability 

function is 1 (by definition). 


