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I.    A Few More Illustrations of Nash equilibria in 3x3 games 

A.  The Regulatory Dilemmas of Neighboring Governments 

B.  Race to the Bottom. Suppose that are two communities that are interested in regulating some 

activity within their own territory. 

i. Suppose further that regulations in each community affect each other's prosperity, with the 

community with the "weakest" regulations being somewhat more prosperous than the 

community with the stronger community. 

ii. To simplify a bit, assume that there are just three types of regulations that can be imposed: 

weak, medium, and strong regulations. 

iii. Suppose also that the joint ideal is "medium, medium" 

iv. However, the effect of local regulations (relative to that of the other community implies that 

each community is a bit better off weakening its regulations, given the other's regulation of the 

activity of interest. 

v. Such games have a Nash 

Equilibrium in Pure strategies that 

is not Pareto Efficient. 

vi. This "regulatory dilemma" is 

sometimes called the "Race to the 

Bottom," because each 

government has an incentive to 

under regulate the phenomena of interest (say air pollution). 

vii. Notice also that a voluntary agreement to move to (medium, medium), as with a treaty, may not 

solve the dilemma because it is not a Nash equilibrium. Both players have an incentive to cheat 

(renege) on the agreement, because 8>7. 

• It is for this reason that treaties often, although not always, have little or no effect on 

international air pollution [See, for example, papers by Murdoch and Sandler (1997)]. 

• This may be difficult to arrange in an international setting although it can be done 

within a federal system by higher levels of government. 

• In a federal system, such problems can, however, be solved if higher levels of 

government punish (fine) communities that are free riding. 

C. NIMBY. Now suppose that the inter-community externality in the opposite direction. That is to 

say, suppose that the community with the weaker regulation attracts undesirable (say, noisy, ugly, 

or polluting industries) into the community. 

 

 

The Race to the Bottom Dilemma 
Community B's Environmental Regulations 

 weak medium strong 

A's env 
regs 
weak 

A,B 
6,6 

A,B 
8,4 

A,B 
9,2 

medium 4,8 7,7 8,5 

strong 2,9 5,8 6,6 
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i. Assume again that there are just 

three levels of regulation and that 

the two community ideal is 

(medium, medium) as in the 

previous example. 

ii. In this case, each community is just 

a bit better off if it has somewhat 

tougher regulations than its 

neighbor. 

iii. We can just slightly modify the payoffs of the above game to illustrate the new problem. 

iv. This game also has a Nash Equilibrium with dominant strategies that is not Pareto Optimal. 

v. This regulatory dilemma is sometimes called the "race to the top" or NIMBY (not in my 

backyard) problem.  Each community has an incentive to tighten its regulations to prevent the 

annoying facility from being placed in their own community, although both would benefit if 

such a facility is built.  At the Nash equilibrium, both communities adopt strong regulations that 

block the facility.  However, a Pareto superior move exists at the equilibrium (7,7) is Pareto 

superior to (6,6). 

D. A Game with a continuum of strategies and the possibility of Mixed Strategy Equilibria 

i. There are many games in normal form that lack a Nash equilibrium in pure strategies.    

ii. Such games fail the “double underline” test in that there is no case where the best replies of 

both players take them to the same cell.  In other words, there are best-reply functions in pure 

strategies (specific choices among the strategies) that never intersect one another.   

• This result is most common in games with discrete strategy sets, because “discreteness” 

allows one of the best reply functions to in sense “jump over” the other in a way that is 

less likely in games where a continuous range of possible strategies exist. 

iii. The notion of a mixed strategy shifts the domain of play from a discrete set of strategies to a 

continuum of probabilities across the strategies.   

• In the context there is always an intersection of the best-reply functions of two 

individuals. (There is a proof of this, which interested students can look up, but we’ll 

not cover that in this course.) 

iv. A good illustrating example is the children’s game of paper, rock, scissors, where two players 

choose strategies simultaneously.  They payoffs can be thought of as +1 if one wins, 0 if there is 

a tie, and -1 if one loses.  With paper winning over rock, rock beating scissors, and scissors 

beating paper.   

• The Payoff below and to the right illustrates the payoffs to such a game. 

•  

The Race to the Top Dilemma 
NIMBY 

Community B's environmental Regulations 

 weak medium strong 

A's env regs 
weak 

A,B 
6,6 

A,B 
4,8 

A,B 
2,9 

medium 8,4 7,7 5,8 

strong 9,2 8,5 6,6 
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• (Believe it or not, there are 

international tournaments 

in paper, rock, scissors.) 

v. Notice that when the best replies 

are underlined, there is no cell with 

two underlines.  Thus, there is no 

Nash equilibrium in pure strategies 

for this game. 

• In this game, the Nash equilibrium involves “mixed strategies” where each player uses 

each strategy with a probability of 1/3. 

• Such probabilistic strategies are called “mixed strategies,” because one “mixes” the 

available strategies rather than playing a particular response to the play of others in the 

game. 

vi. The equilibrium is called a “mixed strategy equilibrium” or Nash equilibrium in mixed 

strategies. 

• Note that there are an infinite number of possible mixed strategies in every game, but 

usually just one equilibrium pair of strategies from which no person can increase their 

expected (average) payoff given the play of the other. 

• There is a mathematical proof that such an equilibrium exists for every game in normal 

form (e.g. matrix form).  The appendix to this chapter sketches out that proof and 

directs you to references where that proof is worked out in somewhat more detail. 

• It is sometimes said that an equilibrium in pure strategies is a special case of that 

proof—name one where the probability of using one of the strategies is 1 and of using 

the others, given the choices of other players, is 0. 

II.    PD-like Games with Continuous Strategy Options   

A.  There are many other settings in which players strategies are not discrete, but rather lie along a 

continuum of some sort.   

• Players on a team may work more or less.   

• More or less of a public good may be provided.   

• One may purchase more or less lottery tickets. 

B. Such games are represented mathematically by specifying a payoff (or utility) function that 

characterizes each player's payoffs as a function of the strategy choices of all the players in the 

game of interest. 

C. For example, supposes there are two players that attempt to maximize a net benefit function 

with a Cobb-Douglas benefit function in a positive externality game, as with NA = SA
.7SB

.3 – cSA
2 

for player A and UB = SB
.7SA

.3 – cSB
2 for player B.   

The Paper, Rock, Scissors Game 
Bob’s choice 

 Paper Rock Scissors 

Al: Paper 
A,B 
0, 0 

A,B 
1, -1 

A,B 
-1, 1 

Al: Rock -1, 1 0, 0 1, -1 

Al: Scissors 1, -1 -1, 1 0, 0 
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i. Differentiating NA with respect to SA allows A’s best reply to be characterized and then solved 

for. 

• The first order condition is .7SA
-.3 SB

.3 – 2cSA = 0 at SA*  (This is the familiar MB = MC 

condition.) 

• To find A’s best reply function solve for SA*.  First shift the marginal cost function to 

the left. 

• .7SA
-.3 SB

.3 = 2cSA                  Multiply both sides by SA
.3 , which yields: 

• .7SB
.3 = 2cSA 

1.3                        Divide both sides by 2c and then take the 1.3th root of 

both sides. 

• [.35SB
.3 /c](1/1.3) = SA   or, switching sides: 

• SA* = [.35SB
.3 /c](1/1.3)  This is player A’s best reply function.  Note that his or      

her best replay varies with the choice of the other player, here SB.) 

• Player B’s best reply function will look similar. (Deriving it is good practice.) 

• At the Nash equilibrium both players will be on their best reply functions—which is to 

say that the Nash equilibrium occurs where the two best reply functions intersect one 

another. 

ii. In symmetric games (games where the payoff functions (net benefits or utilities) are mirror 

images of one another, there is usually an equilibrium at which both players play the same 

strategies (as in many of the discrete strategy games above and in the previous chapter.) 

• In that case, the symmetric equilibrium can be found by assuming that SA* = SB* 

• This allows you to use the above reaction function to write: 

• SB = [.35SB
.3 /c](1/1.3)  

• Solving this for SB will characterize both A’s and B’s strategies at the symmetric Nash 

equilibrium.  To simplify the exponents a bit, raise each side to the 1.3 power: 

• SB
1.3 = [.35SB

.3 /c]            Then divide both sides by SB
.3, which yields: 

• SB
** = [.35/c]          This is player B’s strategy at the Nash equilibrium 

• Given our assumption of a symmetric equilibrium, Player A uses the same strategy so 

SA
** = [.35/c] 

•  

• The analysis can be extended to address normative issues by contrasting the Nash 

equilibrium of this game with the strategy values that maximizes social net benefits, 

which in this case is simply the sum of the two net benefit functions.  As on might 

suspect, both players under invest in their strategies. 
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iii. The process of finding Nash equilibria in games with an infinite number of strategies nearly 

always follows this general pattern. 

III.    Another Illustrating Example: Purchasing Lottery Tickets 

A. Consider another two-person contest, namely a lottery game in which each can buy as many 

tickets as they like and each player’s probability of winning depends on the number of tickets 

owned by that player relative to the total sold.  Both players are rational and so want to maximize 

their "expected" net earnings from purchasing tickets.  

i. The expected value of an event with outcomes 1, 2, i, ... N is Ve =  PiVi, where Pi is the 

probability of event i, and Vi is the value of event i. 

• If Al purchases Na lottery tickets and Bob purchase Nb tickets, Al's expected profit is  

Rae = [Na / (Na + Nb) ]Y - Na C  where Y is the prize one and C is the cost of a lottery 

ticket. 

• Similarly, Bob's expected net benefit (profit)  is Rbe = [Nb / (Na + Nb) ]Y - Nb C 

ii. Al's expected profit maximizing number of lottery tickets can be found by differentiating Rae 

with respect to Na and setting the result equal to zero. 

• dRae/dNa = {[1 / (Na + Nb) ] - [Na / (Na + Nb)2 ]}Y - C = 0 at Na* 

• Putting terms over the same denominator and adding C to each side yields: 

• [Na + Nb - Na]/(Na + Nb)2 = C/Y     or     Nb/(Na + Nb)2 = C/Y 

• Next we want to solve for Na 

• Nb = (Na + Nb)2 C/Y  or Nb(Y/C) = (Na + Nb)2   

• which implies that (NbY/C)1/2 = Na + Nb 

• Thus,  Na* = - Nb + (NbY/C)1/2 

iii. This last function is sometimes called a best reply function. In this case, it tells Al the expected 

profit maximizing number of lottery tickets to purchase given any particular purchase by Bob.   

• Note that Na* varies with Bob's purchase which implies that Al does not have a 

dominant strategy. 

• Note also that a best reply function can be derived for Bob, Nb* = - Na + (NaY/C)1/2  

iv. Note also that if both persons are simultaneously on their best reply function, neither can 

change their strategy and improve their payoff (remember that the best reply function for player 

i maximizes his or her payoff, given the strategies adopted by all other players), as required for 

the existence of a Nash equilibrium. 

v. Thus, the Nash equilibrium of this lottery game occurs at a point where: Na* = - Nb* + 

(Nb*Y/C)1/2  and Nb* = - Na* + (Na*Y/C)1/2 
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• To find the Na* and Nb* combination where both these conditions hold, one can either 

substitute the equation describing Nb* in terms of Na into the Al's best reply function 

and do a bit of algebra. 

vi.  In a symmetric game (a game in which players have the same strategy sets and payoff 

functions) there is normally a symmetric equilibrium. In this case, the two best reply functions 

will intersect at a point where Na = Nb. 

• At the symmetric lottery game's equilibrium: Na = - Na + (NaY/C)1/2    

   or 2Na = (NaY/C)1/2 

• Squaring both sides, we have: 4Na2 = NaY/C  which implies that 4Na = Y/C 

• or Na** = Y/4C  and since Na = Nb at the symmetric Nash equilibrium, we also have 

Nb** = Y/4C 

• Since each ticket costs C euros, so Al spends Na** C or Y/4 euros on tickets. That is he 

spend exactly 1/4 of the prize money (if he wins) on tickets.  

• [The same is true for Bob, so it is clear that this particular lottery will not be a "money 

maker" for its organizers.] 

B. The lottery game can be generalized to think about a wide variety of games in which one's odds 

of winning a contest depends upon how much time, energy, wealth, etc. one invests in the game. 

C. Common applications of lottery contests include the political rent-seeking games, originally 

developed by Gordon Tullock (1980), legal battles in court, research and development contests 

by firms, warfare, car racing, grades on university exams, etc.. 

D.  The lottery game and its various applications can also be generalized to take account of more 

than 2 players, and to include "technologies" where the exponents on investments are subject to 

increasing or decreasing returns. 

E. It is surprisingly easy to generalize this game by, for example, including N players rather than 

two. 

i. Let K represent the total investment of the N-1 players, then the expected payoff of a "typical" 

player is:   

•  Rae = [Na / (Na + K) ]Y - Na C 

ii. Differentiating with respect to Na yields: 

• dRae/dNa = {[1 / (Na + K) ] - [Na / (Na +K)2 ]}Y - C = 0 

iii. Solving for Na, as above, yields: 

• Na* = - K + (KY/C)1/2 

iv. This equation is the best reply function of a typical player in the present N person game.  

v. To find the symmetric equilibrium, note that K = (N-1) Na, so: 
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• Na* = - (N-1) + [(N-1)Na Y/C]1/2 

vi. Solving for Na*, yields: 

• { Na** = [(N-1)/ N2] (Y/C) 

vii. Note that when N = 2, as above,  Na** = (1/4) (Y/C) , as before. 

viii. The total expenditure on "rent seeking" is NC times this amount, or (N-1)Y/N, and this 

expenditure approaches Y in the limit as N approaches infinity.  

F. Different technologies for increasing one's chance of winning can also be taken into account 

by assuming changing our assumptions about investments in the game (Na) affect the probability 

of winning the prize. For example we can take account of economies and diseconomies of scale by 

changing from P =Na/(Na + K), to P = Nad/ ( Nid). 

i. The payoff function for a typical player now becomes: 

• Rae = [Nad/ ( Nid)]Y - Na C 

ii. Differentiating with respect to Na now yields: 

• dRae/dNa = {[dNad-1 / ( Nid) ] - Nad (dNad-1)  / ( Nid)2 }Y - C = 0 

iii. To find the symmetric equilibrium, note that Na = Ni for all i = 1, 2, .... N, so: 

• {[dNad-1 / (a) ] - Nad (dNad-1)  / (2a2) }Y - C = 0, or putting the numerators over 

a common denominator and collecting a few terms: 

•  {[dNNa2d-1 - dNa2d-1)]  / (2a2d) }Y - C = 0,  or 

•  {[d (N-1)Na2d-1)]  / (2a2d) }Y - C = 0  

iv. Solving for Na*, yields the individual's number of tickets (level of resources invested in the 

contest) at the symmetric Nash equilibrium: 

•  Na** = [(N-1)/ N2] (dY/C) 

v. Note that when d=1 and N=2, as above,  Na** = (1/4) (Y/C) , as before. 

• However, the total expenditure on "rent seeking" is again NC times this amount, or 

d(N-1)Y/N.  

• Note that total expenditures will now exceed Y, whenever d> (N-1)/N.  

IV.     To summarize our analysis of lottery contests and contests that can be 

characterized as lotteries: 

i. The more players are in the game, the less each spends. 

ii. However, the total spent rises with the number of players. 

iii. In games with constant returns (the classic contest function) the total investment in the contest 

approaches the value of the prize (Y) as the number of players approaches infinity. 
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iv. Contests with increasing returns may have "super dissipation," where more resources will be 

invested in the contest than the prize is worth. 

v. (Note that no player will routinely play such games. However, "no one" playing is also not an 

equilibrium, so potential players may play mixed participation strategies--more on that later in 

the course.)   

G.  There are a surprisingly large number of applications of these rent-seeking-lottery games.  

• Essentially any contest in which additional resources increases the probability of 

winning, or the fraction of the prize that is won, can be modeled with such functions. 

• Indeed, a very large "contest" literature has emerged in the past ten or twenty years that 

explores such functions. 

• To this point, the "Tullock" contest function has been most widely applied to represent 

interest group politics, although it can be used to represent crime, terrorism, etc. as 

noted above. 

• Note that dissipation--the cost of the "competition"--is an important indicator of social 

welfare, particularly in contests that are "unproductive" and therefore wholly 

redistributive. 

H. Game theory can also be used to represent less concrete settings. 

• For example, payoff fuctions can be represented using abstract functions. 

• And, equilibrium strategies can be characterized using a bit of calculus. 

I.  Illustration: consider a symmetric game in which each player has the same strategy set and the 

same payoff function.  

i.  Suppose there are just two players in the game, Al and Bob.   

• Let the payoff of  player A be G1 = g(X1, X2)  and that of player B be G2 = g(X2, X1) 

where X1 is the strategy to be chosen by player 1 and X2 is the strategy chosen by 

player 2. 

ii.  Each player in a Nash game attempts to maximize his payoff, given the strategy chosen 

by the other.   

• To find payoff maximizing strategy for player A, differentiate his payoff function with 

respect to X1 and set the result equal to zero.  

• The implicit function theorem implies that his or her best strategy X1* is a function of 

the strategies of the other player X2, that is that X1* = x1(X2). 

• A similar reaction (or best reply) function can be found for the other player. 

iii. At the Nash equilibrium, both reaction curves intersect, so that     

  X1** = x1(X2**) and X2** = x2(X1**) 
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V.     A Few Practice Problems 

A. Let R be the "reward from mutual cooperation,"  T be the "temptation of defecting from mutual 

cooperation,"  S be the "suckers payoff" if a cooperator is exploited by a defector, and P be the 

"Punishment from mutual defection."  Show that in a two person game, relative payoffs of the 

ordinal ranking T > R > P > S are sufficient to generate a prisoner's dilemma with mutual 

defection as the Nash equilibrium.  

B. Write down an assurance game and assume that the players initially find themselves at the less 

desirable Nash Equilibrium. Show that your trust problem can be solved by subsidies of various 

kind. Explain how this game differs from a PD game. Can subsidies also be used to solve a PD 

game? 

C. Suppose that the inverse demand curve for a good is P = 100 - Q and that there are two producers.  

Acme has a total cost curve equal to C = 5Q and Apex has a total cost curve of C =10 Q.  Each 

firm controls its own output.  Prices are determined by their combined production.  Characterize 

the Cournot-Nash equilibrium to this game. 

D. Suppose that there are two neighbors, Ms 1 and Ms 2, each of whom enjoy playing their own 

music loudly enough to annoy the other.  Each young woman maximizes a utility function defined 

over other consumption, C, here, the volume of their own noise ( a good), and that of their 

neighbor's consumption, here, the volume of her neighbor’s music (a bad). Ms 1's utility function is 

U1 = C1
0.5

 N1
0.5 N2

-0.5.  Ms 2 has a similar utility function and each has a budget constraint of the 

form , Yi = Ci + Ni. 

i. Characterize each neighbor's "best reply" or "reaction" function, and then determine its slope. 

ii. What happens to neighbor 1's reaction function if his income rises? 

iii. Show the effect that a simultaneous increase in each neighbor's income has on the Nash 

equilibrium of this game.  

iv. Is there anything strange about this game? 

 

VI.    Optional Appendix: A Short, but Abstract, Proof of the Existence of a Nash 

Equilibrium in Every Finite Player, Finite Strategy Game, Finite Repeated Game. 

The proof of the existence of the existence of a Nash equilibrium for any finite game is 

short, but quite abstract.  It relies on two ideas that we’ve not covered in this book: first a 

generalized form of continuity called upper hemi continuity which applies to functionals as well 

as functions, and second, Kakutani’s fixed point theorem which is a generalization of Brower’s 

fixed point theorem, extended to cover sets as well as lines.  (Brower’s fixed-point theorem 

basically says that any continuous function from a bounded line segment onto itself (as with a 

function on the interval 0-1 to the interval 0-1 will at some point reach a point where f(x) = x. 
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Such a point is called a “fixed point” because the function from x into y takes one back to the 

same point on the Y axis.  The Kakutani fixed point theorem establishes a similar property for 

upper hemi-continuous functionals. (Functionals are mappings from one set into another set, 

whereas a function is a mapping from a set into a single point on a real number line).  

Sufficient Conditions for the Existence of Nash Equilibria in Non-
Cooperative Games  

A. Proposition. Every finite player, finite strategy game has at least one Nash 

equilibrium if we admit mixed strategy equilibria as well as pure. (Kreps p.409 and/or 

Binmore p.320).  

B. The proof relies upon Kakutani's fixed point theorem, which is a generalization of 

Browers fixed point theorem. Here is a condensed version. (Presented in Kreps, page 409).  

i. Let i = 1, .... I be the index of players, let Si be the (pure) strategy space for player i and 

let Σi be the space of probabilities distributions on Si.  

ii. The strategy space of mixed strategy profiles is Σ = Πi=1  Σ = Π𝑖=1
𝐼 Σ𝑖 , that is the cross 

product of all individual mixed strategies.  

iii. For each combination of mixed strategies σ = (σ1, σ2, .... σI ) find each person's best 

reply function for player i, given the other strategies, Φi (σ -i). (Here, σ -i, denotes σ less i’s 

dimension of σ) 

iv. Define Φ = (Φ1 , Φ2 , .... ΦI ) as the vector of best reply functions. Note that Φ is a 

mapping from the domain of mixed strategies onto itself. 

v. It is upper semicontinuous and convex (not proven here), hence by Kakutani's fixed point 

theorem, a fixed point exists. (Intuitively, expected value functions are concave (linear) and 

continuous so Φ is also concave and continuous.) 

vi. This fixed point is a mixed strategy I-tuple which simultaneously characterizes and 

satisfies each player’s best reply function. This is it is a Nash equilibrium. Q. E. D.  

• A somewhat less general, but more intuitive proof is provided by Binmore in section 

7.7. 


