Answers for Problems Assigned Week 3

1. Use the Lagrangian and Substitution Methods to characterize the utility maximizing level of goods G and H in the case where

A. Substitution Method

i. maximize $\mathrm{U}=\mathrm{HG}$ where $\mathrm{W}=\mathrm{pG}+\mathrm{H}$

- substituting yields: $\mathrm{U}=(\mathrm{W}-\mathrm{pG}) \mathrm{G}=\mathrm{GW}-\mathrm{pG}^{2}$
- differentiating with respect to G yields: $W-2 p G=0 \quad$ (at $\left.G^{*}\right)$
- solving for G^{*} yields $G^{*}=W / 2 p$
ii. $\mathrm{U}=\mathrm{H}(\mathrm{G}-2)^{2}$ where $10=\mathrm{G}+2 \mathrm{H}$
a. Note that $\mathrm{G}=10-2 \mathrm{H}$
- substituting yields: $\mathrm{U}=\mathrm{H}(8-2 \mathrm{H})^{2}$
- differentiating with respect to H yields:
- $\mathrm{U}_{\mathrm{H}}=(8-2 \mathrm{H})^{2}+2 \mathrm{H}(8-2 \mathrm{H})(-2)=0$ (use the composite function and multiplicative rules.)
- $\mathrm{U}_{\mathrm{H}}=4 \mathrm{H}^{2}-32 \mathrm{H}+64-32 \mathrm{H}+8 \mathrm{H}^{2}=0 \quad$ (at $\left.\mathrm{H}^{*}\right)$
- $\mathrm{U}_{\mathrm{H}}=12 \mathrm{H}^{2}-64 \mathrm{H}+64=3 \mathrm{H}^{2}-16 \mathrm{H}-16=0$
b. The quadratic formula implies
- $\mathrm{H}=\left[16+/-(256-192)^{1 / 2}\right] / 6$
- so:
- $\mathrm{H}^{*}=16 / 6+/-8 / 6=\{4 / 3,4\}$
- and
- $\mathrm{G}^{*}=10-2 \mathrm{H}^{*}$ or $\{22 / 3,2\}$
iii. $\mathrm{U}=\mathrm{HG}$ where $\mathrm{H}^{2}+\mathrm{G}^{2}=10$
a. Note that constrain implies $\mathrm{H}=+/-\left(10-\mathrm{G}^{2}\right)^{1 / 2}$
- so $U=+/-G\left(10-G^{2}\right)^{1 / 2}$
b. Differentiating with respect to G yields
- $\left(10-\mathrm{G}^{2}\right)^{1 / 2}+(1 / 2) \mathrm{G}\left(10-\mathrm{G}^{2}\right)^{-1 / 2}(-2 \mathrm{G})=0 \quad$ at G^{*}
c. Multiplying by $\left(10-G^{2}\right)^{1 / 2}$ to simplify yields:
- $\left(10-G^{2}\right)-\mathrm{G}^{2}=0$ or $2 \mathrm{G}^{2}=10$
- so $\mathrm{G}^{*}=+/-(5)^{1 / 2} \quad$ (plus or minus the square root of 5)
d. Substituting G^{*} into the equation characterizing H as a function of G yields;
- $\mathrm{H}^{*}=+/-\left(10-\mathrm{G}^{* 2}\right)^{1 / 2}=+/-(5)^{1 / 2}$

B. Lagrangian Method

i. $\quad \mathrm{U}=\mathrm{HG}$ where $\mathrm{W}=\mathrm{pG}+\mathrm{H}$

- Form a Lagrangian: $L=H G-\lambda(W-p G-H)$
- differentiating yields: $H-\lambda p=0$
- $G-\lambda=0$
- and: $\mathrm{W}-\mathrm{pG}-\mathrm{H}=0$
- Now solve for H, G, and λ.
- dividing the first two yields: $\mathrm{H} / \mathrm{G}=\mathrm{p}$ or $\mathrm{H}=\mathrm{Gp}$
- which implies that $\mathrm{W}-\mathrm{pG}-\mathrm{pG}=0$ or $\mathrm{G}^{*}=\mathrm{W} / 2 \mathrm{p}$
-

$$
\text { and } \mathrm{H}=\mathrm{W} / 2
$$

ii. Given: $\mathrm{U}=\mathrm{H}(\mathrm{G}-2)^{2}$ where $10=\mathrm{G}+2 \mathrm{H}$

- Form a Lagrangian: $\quad \mathrm{L}=\mathrm{H}(\mathrm{G}-2)^{2}-\boldsymbol{\lambda}(10-\mathrm{G}-2 \mathrm{H})$
- Differentiate with respect to H and G (the control variables) and λ which yields three equations:
- $\mathrm{L}_{\mathrm{H}}=(\mathrm{G}-2)^{2}-2 \lambda=0$
- $\mathrm{L}_{\mathrm{G}}=2 \mathrm{GH}-4 \mathrm{H}-\lambda=0$
- $L_{\lambda}=(10-G+2 H)=0$
a. Next, solve this system of simultaneous equations for H and G .
- Dividing a / b and solving for G yields $G=4 \mathrm{H}+2$
- Substituting into the constraint for G yields

$$
10=4 \mathrm{H}^{*}-2+2 \mathrm{H}^{*} \text { or } \mathrm{H}^{*}=8 / 6=4 / 3
$$

- and since $\mathrm{G}^{*}=10-2 \mathrm{H}^{*}$ (from the constraint) $\mathrm{G}^{*}=22 / 3$
- (You have to be on the constraint under Lagrange. If you had just substituted back into $\mathrm{G}=4 \mathrm{H}+2$ you would be describing a point on the consumption expansion path. Both methods should yield the same result, because the solution is where the consumption expansion path crosses the budget line.)
iii. Given $\mathrm{U}=\mathrm{HG}$ where $\mathrm{H}^{2}+\mathrm{G}^{2}=10$
- Form a Lagrangian: $\mathrm{L}=\mathrm{HG}+\lambda\left(10-\mathrm{H}^{2}-\mathrm{G}^{2}\right)$
- Differentiate with respect to control variables H and G and the Lagrangian multiplier λ
- $\mathrm{L}_{\mathrm{H}}=\mathrm{G}-2 \mathrm{H} \lambda=0$
- $\mathrm{L}_{\mathrm{G}}=\mathrm{H}-2 \mathrm{G} \lambda=0$
- $\mathrm{L}_{\lambda}=10-\mathrm{H}^{2}-\mathrm{G}^{2}=0$
a. Solve this system of simultaneous equation (c, d, e) for G and H. (You can also solve for the Lagrangian multiplier if you wish, but this is optional.)
- Dividing cand d, then cross multiplying yields $\mathrm{H}^{2}=\mathrm{G}^{2}$
- or $\mathrm{G}=+/-\mathrm{H}$
- Substituting into the constraint for G yields: $\mathrm{H}^{2}+\mathrm{H}^{2}=10$
- or $\mathrm{H}^{*}=+/-(5)^{1 / 2}$
b. That is to say, H^{*} equals plus or minus the square root of 5 .
c. Since from "c," $G^{*}=+/-H^{*} \quad G^{*}$ also equals $+/-(5)^{1 / 2}$

2. Use the Kuhn-Tucker Technique to characterize the utility maximizing level of goods W and L when:
i. $\mathrm{U}=\mathrm{L}^{.5}+1 /(1+\mathrm{W})$ and $24 \geq \mathrm{W}+\mathrm{L}$ with $\mathrm{W}, \mathrm{L} \geq 0$

- Note that U is strictly concave and the feasable set is convex. The second derivatives of U are both negative, and the cross partial is greater than or equal to zero.
a. Form the KT function in a manner similar to that of the Lagrangian:
- $\mathrm{K}=\mathrm{L}^{5}+(1+\mathrm{W})^{-1}+\lambda(24-\mathrm{W}-\mathrm{L})$
b. Differentiating with respect to the control variables W and L (work and leisure) and with respect to λ yields the following KT first order conditions:
c. $\mathrm{K}_{\mathrm{L}}=.5 \mathrm{~L}^{-.}-\lambda<=0 \quad$ with $\mathrm{L} \geq 0$ and $\mathrm{L}\left(.5 \mathrm{~L}^{-.5}-\lambda\right)=0$
d. $\mathrm{K}_{\mathrm{W}}=-(1+\mathrm{W})^{-2}-\lambda<=0$ with $\mathrm{W} \geq 0$ and $\mathrm{W}\left(-(1+\mathrm{W})^{-2}\right)=0$
e. $\mathrm{K}_{\lambda}=24-\mathrm{W}-\mathrm{L} \geq 0$ with $\lambda \geq 0$ and $\lambda(24-\mathrm{W}-\mathrm{L})=0$
- Before working on the KT conditions, take a moment to think about the objective function. Note that utility rises with L and falls with W. W is a bad. This person will consume as little as possible of the bad, W, and as much as possible of the good, L . The constraints determine what is possible.
f. Now consider whether $\mathrm{W}=0$ and $\mathrm{L}=24$ satisfies the KT conditions.
- Equation e, the constraint, is clearly satisfied--as an equality.
- Equation d, the f. o. c. for W is also clearly satisfied. The negative of a squared term is always negative, unless it equals zero. With W=0, we are still OK as long as λ is positive or a small negative number we are all right here. In that case, $\mathrm{W}=0$ satisfies the non-negativity constraint and the product constraint.
- Equation c is satisfied only if $\boldsymbol{\lambda}$ takes the value $.5(24)^{-5}$ in which case the K_{L} $=0$. If $L=24$, then L is clearly greater than zero, and our assumption about λ assures that $\mathrm{K}_{\mathrm{L}}=.5 \mathrm{~L}^{-5}-\lambda=0$. Given this value for λ, the product constraint is satisfied.
- We have now shown that the combination $\mathrm{W}=0, \mathrm{~L}=24, \lambda=.5 \mathrm{~L}^{-.5}$ satisfy the KT first order conditions.
- QED
- Given U quasi concave, and the convex opportunity set, the combination W $\left.=0, \mathrm{~L}=24, \lambda=.5(24)^{-5}\right)$ satisfies the KT first order conditions for a maximum
- (The Arrow Enthoven sufficiency theorem implies that given a convex feasible and quasi-concave objective function, the KT first order conditions are sufficient to characterize the constrained optimal values of the control variables.)
ii. Interpret your result. What kind of "good" is W ?
- As noted above W is a bad, perhaps unpleasant and unpaid work in a setting where leisure is an option. Consequently, this individual chooses a corner solution with $\mathrm{L}=24$ and $\mathrm{W}=0$.

