
ELEMENTARY MATRIX MAGIC

In my introductory course on mathematical economics, I no longer cover matrix
algebra in lecture or ask students to master the techniques for the exams.  However, many
students have requested that some coverage of matrix methods be included.  I used to spend
three weeks on it, but eliminated coverage because use of the matrix tools in the economic
literature continues to be relatively limited, and indeed in other classes at GMU.  Matrix algebra
would be better covered in the second math econ course.   Since we have not taught the second
math economic course for several years, I thought that some condensed coverage could be
managed in a hand out.  

There are a variety of economic and econometric analyses where matrix algebra and
matrix calculus continues to be used.  (1) Matrix algebra can be used to solve linear demand
systems for a price vector that would clear all markets simultaneously.  (2) Matrix forms of the
first and second order conditions can be used to characterize a function's maxima and minima,
and to determine the concavity of the objective functions and or constraints in cases where many
control variables are involved.  (3) Most statistical methods in economics have been developed
for linear estimators which can be very easily written in matrix/vector forms.  (4) Comparative
statics of models with more than one first order condition.

I. The Essentials of Matrix Algebra

A. A matrix is a compact way of representing a series of numbers, or several series of numbers.

i.  For example, suppose there are three variables: X1, X2, X3, and you have four
observations of each.  One can denote matrix X as:

ii.    X =













1 2 3
2 4 6
3 6 9
4 8 12













iii.  The values of X1 are in the first column  X1 = 1, 2, 3, 4;  those of X2= 2, 4, 6, 8 are in the
second column, and those of X3 = 3, 6, 9, 12 are in the third.

iv.  This representation is most useful in cases where  each row represents a point described by
a specific combination of X1, X2 and X3.  The first point in the illustration would be (1, 2,
3)  the second would be (2, 4, 6) , the  third (3, 6, 9) and the forth (4, 8, 12).

v.  Such a representation is, of course, very useful when one collects data about some event,
or time period, for several variables: money supply, national income, interest rates, etc.

B. Each element of a matrix is given an address based on its row and column.  The
convention is (row, column)  or RC as in my own initials. 

i.  In the matrix above, x13 represents the number (or other expression) that is in the first

row and third column of the matrix (here,  x13 =3).

ii.  x43 is the number or expression in the fourth row and third column (  x43= 12).  

C. There are a variety of operations and concepts that are very useful in matrix algebra:

i.  Square Matrix:  a matrix that has the same number of rows and columns

ii.  Identity Matrix: a square matrix that has "1" down the diagonal and zeros every where else

(every Ijj = 1, and every Ijk = 0 for j <> k)

iii.  Matrix addition:  two matrices can be added together if they have the same dimensions
(the same number of rows and the same number of columns).  The sum of two such
matrices is simply the matrix whose elements is made up of the sum of the elements in

each respective cell of the matriced added.  That is:                  A + B = C       where cij = aij
+ bij

iv.  Scalar Matrix Multiplication:  Multiplying any matrix by a "scalar"  (e. g. a single real
number) yields a matrix whose elements are the elements or the original matrix multiplied

by the scalar.   ( Let k be a scalar and A be a matrix, then kA = B implies that b ij = kaij )

v.  Matrix Multiplication: is a bit more complicated convention than the previous ideas:
Matrix multiplication multiplies the rows of the first matrix by the columns of the second,
(again it is RC) and adds up these number or expressions to form elements of the new
matrix.  Note that matrix multiplication requires the first matrix to have the same number
of columns and the second matrix has rows.    

a. ( So if A is an  "m by n"  matrix and then B must be a "n by x" matrix for multiplication
to be possible.  The new matrix will be a "m by x" matrix, that is to say it will have the
same number of rows as the first  matrix has columns and the same number of rows as
the second matrix has rows)

b. Let C = AB  then      ckj = Σ
i=1

n
aki ∗ b i

c. It is clear that in most cases, matrix multiplication is best left to computers, since there
are many opportunities to make minor arithmetic errors, but it is none-the-less useful to
perform one or two by hand.  For example

let; A =  1 2 3  and; B =









2
4
6









; then; AxB = 2+ 8 + 18 = 28 ≡ C

d. Note that A is a 1x3 matrix, and B is a 3x1 matrix, the result C is a 1x1 matrix.

e. Note, also, that the product of a matrix and the appropriately sized Identity matrix is
always the original matrix.   AI = A

vi.  The inverse of a matrix A is denoted A-1 and is the matrix that A can be "post"
multiplied by to obtain the identity matrix.  AxA-1= I.  

a. There are a variety of requirements for the a  matrix to have an inverse, for example it has
to be a square matrix, and has to have at least some non zero elements.

b. If a square matrix does not have an inverse it is singular.

c. For example, if the rows ( columns) of a matrix are linear combinations of other rows
(columns) the matrix will be singular.

d. Inverses, although cumbersome to calculate, are very useful in performing matrix
algebra.  ( For example suppose you know that BA = C and you want to solve for B.
Post-multiplying by the inverse of A yields  BAA-1= BI = B = CA-1)



vii.  The transpose of matrix A is the matrix that you get by switching the rows and columns

of A.  Let AT be the transpose of a then, aT

ij = aji .

a. Note that one can always multiply A by its transpose since the transpose will have the
same number of columns as A has rows.  (That is if A is a NxM matrix then AT will be a
MxN matrix.)

b. Multiplying a matrix by its transpose, AAT , is roughly the "equivalent" of squaring the
original matrix.

viii.  The determinant of a matrix, |A|, is a unique scalar that is computed by multiplying
various element  pairs and adding those products up in a specific pattern.   The determinant
of a two by two matrix is easy to calculate, |A| = a11a22 - a12a21   

a. For example if A =   then |A| = (3)(7) - (1)(3) = 18





3 1
3 7






b. (Evaluating large matrices is more cumbersome, and, cases beyond 3x3 matrices are best
left to mathematical computer packages like Mathematica, Maple, Gause, MathCad etc.
See Chaing, pg 96-7, for the Laplace expansion method which is fairly easy to apply to a
3x3 matrix..)

II. Extensions of Matrix Algebra Used in the Mathematics of Optimization

i.  A Hessian matrix is a square matrix formed by placing the second derivatives of a
function in matrix form.  Second derivatives of all control variables will lie along the
diagonal and cross partials in the off diagonal positions.  (see Chaing pg 333)

a. The Hessian matrix is widely used to determine or characterize the concavity or convexity
of an objective function with more than one control variable.

b. For example if Z = f(X1, X2)   the Hessian matrix is  where f11 is the second





f11 f12

f21 f22






partial derivative with respect to X1 and F12 is the second cross derivative e. g. what you
get when you differentiate Z with respect to X1 and then differentiate that result with
respect to X2.

c. Z will be strictly concave if f11 < 0 and f11f22-f12f21 >  0 , the latter is the determinant of
the Hessian. 

d. (The Hessian matrix is said to be "negative definite" in this case.)

e. Hessians and bordered Hessians (used for Lagrangian second order conditions) are not
widely used outside of graduate micro text books any more, as the convention now is to
assume that the functions of interest have Concave or Convex shapes as "necessary, "
"convenient," or seems plausible for the case at hand.

A. Cramer's rule is a very useful method for solving a simultaneous system of equations for
one of the variables of interest.   

i.  Cramer's rule is used for the multivariate version of the implicit function differentiation
rule. It is allows one to compute derivatives (comparative statics) of implicit functions that
characterize solutions to optimization problems with more than one control variable.   
(Lecture 4 focused on the implicit function theorem.)

ii.  Cramer's rule is described in detail by Chaing on page 108/9, and on 210/2 as applied in
the implicit function theorem.

iii.   Given an equation Ax = d where A is an nxn matrix, and X is a nx1 vector, x can be
solved for as:   x = A-1d   (which is obtained by ordinary linear algebra: premultiplying
both sides by A-1 ).  

iv.  The solution for a single element of the X vector can be computed via Cramer's rule (see
Chaing pg 109) as follows:

v.   where the d vector has been inserted in the J thcolumn ofx j = 
1
A















a 11 ... d 1 a 1n

... .. d 2 ...

... ... ... ...
a n1 ... d n a nn













A.   The solution for xj is the determinant of the new matrix divided by the determint of
the original matrix.

vi.   Obviously, computing this becomes a task for computers once n exceeds 3.  But for
many small economics models with 2x2 or 3x3 "A" matrices, Cramer's rule provides nice
mathematical solutions for variables and/or derivatives of economic interest.

vii.  Of course, there are other models in which a system of linear equations has to be solved
for a single variable.  Cramer's rule is often applied in macro economics and occassionally in
industrial organization (Harberger) and in computable general equilibrium models.

III. Application to Econometrics

A. Derivation of the Regression Estimator: The most widely used bit of matrix algebra in
economics characterizes the line, Y = XB, which minimizes the sum of squared residuals
through N  k+1-dimensional points (observations):  Β =(XTX)-1 XTY

i.  The OLS estimater is calculated by applying ordinary calculus to matrices.

a. The linear relationship of interest can be written as Ψ = XB where Ψ is a tx1 vector of
estimated "Y" observations, Β is a kx1 vector of coefficients, and X is a txk vector of the
k independent variable observations.

b. The residuals generated by an estimate of B are simply:  R = Y - Ψ = Y - BX  and the
squared residuals are in matrix notation  

R2 = (Y - XB)(Y - XB)T = YYT - 2XTYBT +XBXTBT   

ii.  Choose Β to minimize R.  

a. This can be done by differentiating R2 with respect to Β and setting the result equal to
zero.  R2

B = - 2XTY +2XTXB = 0   at B*

b. This implies that  2XTXΒ = 2XTY  

c. Dividing by 2 and pre multiplying by XTX inverse yields  Β = (XTX)-1XTY 

d. Note that this estimator will minimize the sum of squared residuals regardless of the
error distribution, because that is how B is derived.  (The same estimator can be derived in
other ways using somewhat different assumptions.)


