
Essentials of Constrained Optimization
Whenever a person uses scarce resources to advance his or her goals, the decision

can be represented as an exercise in constrained optimization.  A person at the grocery
store tries to find the shopping basket full of food that best satisfies his or her appetite
and health.  A busy person allocates time between paid and unpaid work, travel, study,
and recreation in order to realize the best life that he or she can imagine, given the time
and opportunities at hand.  A firm allocates its R&D budget among alternative projects
to maximize expected profit.

Because so many business, engineering, and political decisions are constrained
optimization problems, a good deal of mathematical research has been applied to
developing alternative mathematical methods for solving these problems.  As a result,
there is both a vocabulary of optimization and an array of optimizing techniques.  

The language of optimization distinguishes between objective functions (the goals:
profit, utility, etc.), constraints (which describes what is feasible),  control variables (the
variables that can be directly determined by the decision maker) and parameters
(variables that can not be controlled by the decision maker, or at least are taken as given
for the present decision).   [ DEF: the feasible set is the collection points that satisfies
the constraints of the problem of interest. ]

There are three mathematical optimization methods that are widely used by
economists: the substitution method, the Lagrangian method, and the Kuhn Tucker
Method.  Today's lecture will review these methods and discuss the conditions that are
sufficient to fully characterize the optimal allocation of scarce resources among
alternative uses.

I. The Substitution Method 
A. In some cases, it is possible to "substitute" the constraint(s) into the objective

function to create a new "composite function" that fully represents the effects of
the constraint on the original objective function.  

i.  Generally, the substitution method attempts to reduce the number of control
variables that have to be taken account of.

ii.  The substitution method generally entails the following steps:
a. First., use the constraints to completely specify of the control variables as functions of

the subset of control variables that are of most interest.
b. Second, substitute these relationships into the objective function to form a new objective

function (that reflects all the constraints).
c. Third, differentiate with respect to each of the control variables that remain. (Often this

will be just a single variable.)
d. If the new objective function is strictly concave, the optimal value(s) of the control

variable(s) given the constraint(s) is the one(s) that sets the first derivative equal to zero.
iii.  For example consider the separable utility function: U = x.5 + y.5  to be maximized

subject to the budget constraint 100 = 10x + 5y.  (Good x costs 10 $/unit and
good y costs 5 $/unit.  The consumer has 100 dollars to spend.) 

iv.  We can rewrite the constraint as y = [100 - 10x]/5 = 20 - 2x
v.  Substituting this for Y in the objective function (here, the utility function) yields a

new function entirely in terms of x:     U = x.5 + (20 - 2x ).5   

vi.  This new function accounts for the fact that every time one purchases a unit of x
one has to reduce his consumption of y.   (Why?)  

vii.  Note also that this new objective function has just one control variable, x.
viii.  Differentiating with respect to x and setting the result equal to zero allows the

utility maximizing quantity of x to be characterized:  
                    d[x.5 + (20 - 2x ).5  ]/dx = .5 x -.5  + .5(20-2x)-.5 (-2)  = 0  (at U max)

a. The derivative will have the value zero at the constrained utility maximum.  Setting the
above expression equal to zero, moving the second term to the right, then squaring and
solving for x yields:

4x = 20 - 2x  ⇒   6x = 20    ⇒   x* = 3.33
b. Substituting x* back into the budget constraint yields a value for y*

                        y = 20 - 2(3.33) ⇒  y* = 13.33
ix.  No other point on the budget constraint can generate a higher utility level than

that (x*,y*) = (3.33,13.33).

II. Lagrangian Method
A. The Lagrangian method uses a somewhat different method of modifying the

objective function to account for (equality) constraints that restrict the feasible
range of the control variables.  The method operates as follows:

i.  Transform all of the constraints into a form that equals zero.  For example,  a
budget constraint, W = P1X1 +P2X2 , can be rewritten as:  W - P1X1 - P2X2 = 0.

ii.  Create a new objective function, called a Lagrangian, by multiplying each constraint
( in its zero form) by a Lagrangian multiplier λ i and adding the result(s) to the
objective function.  For example, if the utility function is U = u(X1, X2) and the
constraint is as above the Lagrangian would be:

 L = u(X1, X2) + λ(W - P1X1 - P2X2)
iii.  Differentiate the Lagrangian with respect to all the control variables and the

Lagrangian multipliers.  (In the example, this would be with respect to variables  
X1, X2 and λ .  The consumer does not control the other parameters of the
optimization problem.  The prices of the goods, and wealth are generally assumed
to be exogenous at the level of the consumer.  )

a. LX1 = UX1 - λP1

b. LX2 = UX2 - λP2

c. Lλ = W - P1X1 - P2X2

d. ( Subscripted variable names denote partial derivatives with respect to the variable
subscripted.   LX1 = δL/δX1 , UX1 = δU/δX1 , etc.)

iv.  At the constrained maximum (or minimum) all of these partial derivatives will
equal zero.  

v.  These first order conditions can be used to deduce properties of the constrained
optimum in the same manner as the first order conditions of unconstrained
optimization problems.  
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a. For example, one can use the above to show that UX1 / UX2 = P1  / P2 .  
b. That is to say, at the utility maximum, the marginal rate of substitution between X1 and

X2 equals their relative price.
vi.  In some cases, it is also necessary to determine whether the combination of

control variables (the x's) and Lagrangian Multipliers that satisfy the first order
conditions also satisfies the second order conditions.  This is only necessary if
there is some doubt about the shape of the objective function and/or the feasible
set.  To determine whether the second order conditions hold, requires
differentiating the first order conditions with respect to the control variables and
the Lagrangian multipliers, and then assembling the results into what is called a
bordered Hessian Matrix. (See the Matrix Magic handout.)  

vii.  This technique is rarely used in modern economics, because we usually assume
that the objective function is concave and the feasible set is convex.  (See the
sufficiency theorems below in part IV.)

III. Kuhn Tucker
A. The Kuhn-Tucker method allows with non-negativity and inequality

constraints to be taken account of. It is surprisingly similar to the Lagrangian
method in that it involves "adding" constraints to the objective function (the
function being maximized or minimized) after writing them in a particular form.

B. Kuhn-Tucker can characterize corner solutions  and "interior" solutions as well as the
tangency solutions of the Lagrangian method. KT can also rule out negative solutions.  It is,
consequently, a somewhat more general optimization method than the other two
methods discussed above.  Unfortunately,  it is also more difficult to apply.   

i.  Corner solutions are solutions at the intersection (corner) of two constraints.
ii.  Interior solutions occur when a function has a local maximum within the feasible

set (inside the boundary of the constraint set).  

C. The Kuhn-Tucker Method generally entails the following steps:
i.  Convert all inequality constraints into an algebraic expression that is greater than

or equal to zero.
ii.  Add each of these constraints to the objective function after multiplying each by

its own unknown "Lagrangian" multiplier, λ i , to form the Kuhn-Tucker objective
function Z.   

a. For example given utility function, U = u(X1, X2 )  and wealth constraint          
W ≥ P1X1 + P2X2  generate the Kuhn-Tucker function:

b. Z = u(X1, X2 ) + λ( W - P1X1 - P2X2)

iii.  Differentiate function Z with respect to the control variables and the multipliers,
as in the Lagrangian technique.  (In the example, these are: X1, X2 and λ )

iv.  At the constrained maximum, the partial derivatives with respect the control
variables may be less than or equal to zero, and those with respect to the
"multipliers" may be greater than or equal to zero.  The multipliers have to be

greater than or equal to zero.  The control variables are also usually assumed to be
greater than or equal to zero.   (See Chiang p. 726)

v.  If values for the control variables exist that set the partial derivatives of Z equal
zero, the maximum occurs along the "upper" boundary, as with a Lagrangian.

vi.  At the corner solutions and within the feasible set, different conditions hold.  
a. For example, the partial derivatives with respect to the control variables may be negative,

indicating that the function is downward sloping as it approaches the upper bound of the
feasible set.  

b. In such cases, the constrained maximum occurs either inside the feasible set, or
somewhere along its lower bound. 

vii.  The Kuhn Tucker conditions for the example are:
a. UX1 - λP1 ≤ 0    with  X1 ≥ 0  and  X1 (UX1 - λP1 ) = 0
b. UX2 - λP2 ≤ 0    with  X2 ≥ 0  and  X2 (UX2 - λP2 ) = 0
c. W - P1X1 - P2X2 ≥ 0  with λ  ≥ 0  and λ (W - P1X1 - P2X2) = 0

viii.  The last term in the in the first order conditions, basically says that either your
optimum lies along the constraints which bound from above (as in a Lagrangian)
or along those which bound from below (along the non-negativity constraint),
inside the feasible set, or both (as at a corner).

ix.  Bliss points and other maxima within the feasible set (constraints) can be
characterized with the KT method.  In that case, UX1 = 0 and λ = 0. 

IV. Sufficiency Conditions (Look these up in Chaing.)
A. Concave Programming: the Kuhn Tucker Sufficiency Theorem (Chiang 21.4, see

also La Fuenta Theorems 1.14,  1.18, 2.1, and 2.2).

B. Quasi-Concave Programming: the Arrow Enthoven Sufficiency Theorem (Chiang
21.5,  La Fuenta Theorem 2.2).

V. Problem Set  (Collected next week)
A. Use the Lagrangian and Substitution Methods to characterize the utility

maximizing level of goods G and H in the case where
i.  U=HG   where W = pG + H, iii. U = HG     where   H2 +

G2 = 20
ii.  U = H(G-2)2   where  12 = G + 2H,iv.  U = v(G) + u(H) where H + G = W

B. Use the Kuhn-Tucker Technique to characterize the utility maximizing level of
goods W and L when:

i.  U = L.5 + 1/(1+W)  and  24  ≥  W + L    with   W, L ≥ 0
ii.  Interpret your result.  What kind of "good" is W ? 

Next week:  the implicit function theorem and more applications and extensions of
constrained optimization.  
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