
Essentials of Constrained Optimization
Economic optimization problems generally involve individuals making choices in

a setting of facing individuals and firms are constrained in some manner so that the above
"unconstrained" maximizing (or minimizing) techniques can not be directly applied by
either the individuals themselves, or those attempting to model their behavior.  (For
example, utility maximizing individuals are constrained by a budget constraint.)  There are
two widely used methods for  solving constrained optimization problems.

I. The Substitution Method
A. The Substitution Method.   In some cases, it is possible to "substitute" the constraint

into the objective function (the function being maximized) to create a new
composite function that fully reflects the effect of the constraint.   I will use this
method extensively through out this course.  

i.  For example consider the separable utility function: U = x.5 + y.5  to be maximized
subject to the budget constraint 100 = 10x + 5y.  (Good x costs 10 $/unit and
good y costs 5 $/unit.  The consumer has 100 dollars to spend.) 

ii.  Notice that, from the constraint we can write y as y = [100 - 10x]/5 = 20 - 2x

iii.  Substituting into the objective function (in this case, a utility function) yields a new
function entirely in terms of x:     U = x.5 + (20 - 2x ).5   

iv.  This new function accounts for the fact that every time one purchases a unit of x
one has to reduce his consumption of y.   (How?)  Moreover it is a function with
just one control variable, x.

v.  Differentiating with respect to x allows the utility maximizing quantity of x to be
characterized:  

                             d[x.5 + (20 - 2x ).5  ]/dx = .5 x -.5  + .5(20-2x)-.5 (-2)  = 0  (at U max)

a. The derivative will have the value zero at the constrained utility maximum.  Setting the
above expression equal to zero, moving the second term to the right, then squaring and
solving for x yields:

4x = 20 - 2x  ⇒  6x = 20    ⇒  x* = 3.33
b. Substituting x* back into the budget constraint yields a value for y*

                        y = 20 - 2(3.33) ⇒ y* = 13.33
vi.  No other point on the budget constraint can generate a higher utility level than

that (x*,y*) = (3.33,13.33).

II. Lagrangian Method
A. The Lagrangian method uses a somewhat different method of modifying the

objective function being maximized to account for (equality) constraints that restrict
the feasible range of the objective function.  The method operates as follows:

i.  Transform all of the constraints into a form that equals zero.  For example, given
an algebraic expression, like a budget constraint, W = P1X1 +P2X2 , becomes a
form like:  W - P1X1 - P2X2 = 0.

ii.  Create a new objective function, called a Lagrangian, by multiplying each constraint
( in its zero form) by a Lagrangian multiplier λi and adding the result(s) to the
objective function.  For example, if the utility function is U = u(X1, X2) and the
constraint is as above the Lagrangian would be:

 L = u(X1, X2) + λ(W - P1X1 - P2X2)
iii.  Differentiate the Lagrangian with respect to all the control variables and the

Lagrangian multipliers.  (In the example, the control variables are X1, X2 and λ.
The consumer does not control the other parameters of the optimization problem.
The prices of the goods, and wealth are generally assumed to be exogenous at the
level of the consumer.  )

a. LX1 = UX1 - λP1

b. LX2 = UX2 - λP2

c. Lλ = W - P1X1 - P2X2

d. (Subscripted variable names denote partial dervatives with respect to the variable
subscripted.   LX1 = δL/δX1 , UX1 = δU/δX1 , etc.)

iv.  At the constrained maximum (or minimum) all of these partial derivatives will
equal zero.  These first order conditions can be algebraically manipulated to
deduce properties of the constrained optimum. 

a. For example, one can use the above to show that UX1 / UX2 = P1  / P2 .  

b. That is to say, at the utility maximum, the marginal rate of substitution between X1 and X2

equals their relative price.

III. The Implicit Function Theorem
A. In most cases, the first order conditions of an "abstract" optimization problem

completely characterizes the optimum values of all control variables.  However, it is
often difficult to directly interpret "the solution" in an intuitive and meaningful way.

B. Algebraic manipulation of the first order conditions can often shed a bit of light on
the properties of the solution characterized. 

i.  For example, the first order conditions of a consumers constrained utility
maximizing choice can generally be manipulated to show that the marginal rate of
substitution between any two goods equals their relative prices.  

ii.  (This is the algebraic method of showing that the constrained utility maximum lies
at a point where an indifference curve is tangent to the budget constraint.) 

C. The implicit function theorem allows additional properties to be deduced from the
first order conditions.  The implicit function theorem allows the first order
conditions to be used:

i.  to characterize the solution (optimal value of the control variable(s)) as a function
of other parameters of the optimization problem.

ii.  and to characterize the comparative statics of the solution.  

a. To do the latter, one applies the "implicit function differentiation rule" to find derivatives
of the "ideal values"of the control variables as parameters of the choice problem change.  
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b. For example, in a consumer choice problem one can determine rate at which the optimal
quantity of a good changes as the consumer's income changes or as some price changes.
(dQ*/dY, dQ*/dPs, ...)

D. The Implicit Function Theorem (see Chiang 205 - 206):  Given a function such that:  

i.  F( Y, X1, X2, , , Xm) = 0

ii.  Where the function F has continuous partial derivatives FY, FX1, FX2,  ,  , FXm,

and at point (Yo, Xo
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o
m) satisfying condition i,  FY is nonzero, Then

there exists an m-dimensional neighborhood of the point   (Yo, Xo
1, X
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2, X

o
3, , ,

Xo
m),  N, in which an implicit function exists that characterizes each of the "ideal"

values of the control variables of F as a function of non-control variables (the
"parameters" of the choice problem): Y = f( X1, X2, X3, , , Xm).

iii.  This function satisfies  Yo = f( Xo
1, X
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2, X
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3, , , X

o
m)  in particular,  and more

generally, Y = f( X1, X2, X3, , , Xm) for all points within the neighborhood.

iv.  This gives the function the status of an identity within neighborhood N. Moreover,
the implicit function, f, is continuous and has continuous partial derivatives with

respect to X1, X2, , , Xm.

v.  The N-equation version of the implicit function theorem is broader in scope but
essentially similar.  (See Chiang 210 - 211.)

E. In economic applications, the original function, F, is usually the first order condition
of some optimization problem, and the implicit function is the individual's (or firm's)
demand (or supply) function.

F. The implicit function differentiation rule is used to characterize the partial derivatives of
the implicit function "generated" as above.

i.  The rule is surprisingly simple for single equations.   The partial derivative of

implicit function Y with respect to Xi is simply:      YXi = FXi / - FY    (where
subscripts denote partial derivatives with respect to the variable subscripted).

ii.  The derivation of this rule is based on the definition of F and the use of total
derivatives.

a. Recall that at the point of interest, F(Yo, Xo
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o
m) = 0

b. So the total derivative of F has to add up to zero:                                                            

                         dY FY  + dX1 FX1  + ..... dXm FXm  = 0

c.   Consequently, if we allow only  Xi  and Y to vary:   dYFY  + dXi FXi  = 0

d. Solving this expression for dY/dXi yields:  dY/dXi = FXi / - FY

iii.  The implicit function differentiation rule allows one to characterize how a an
optimal value varies as parameters of the decision problem vary.

G. Example:  Determine the slope of an individual's demand function

i.  Suppose that "Al" has a utility function, U = u( X1, X2)  which is monotone
increasing, twice differentiable and strictly concave.

ii.  Al wants to find the utility maximizing combination of X1 and X2 given the

budget constraint that he faces,  W = P1X1 + P2 X2 .

iii.  Using the substitution method we write U as:     U = u( X1, (W - P1X1)/P2 )

iv.  Differentiating with respect to X1 yields f. o. c. :     UX1 + UX2 ( - P1/P2) = 0

v.  Any value of X1 that satisfies this first order condition will maximize utility.

Denote such an X1 as X1*

vi.   At X1*, the first order condition is a function like F in the definition of the
implicit function theorem.  Since the first order condition is differentiable
(remember that we assumed that U was twice differentiable),  an implicit function

exists which characterizes X1* as a function of the other parameters of the choice

problem. X1* = x( W, P1, P2)

vii.  This function is Al's demand function for X1. 

viii.  The sensitivity of Al's demand for a change in the price of good 1 can be
computed using the implicit function differentiation rule:

a. X1* P1 = FP1/ - FX1
b. which from the first order condition ( the function F for this problem) can be written as:

[ UX1X2 (-X1/P2) + UX2( - 1/P2) - UX2X2 (P1/P2)(-X1/P2) ]
                                  -------------------------------------------------------------------------------------------------------------------------------------------------------     

-[UX1X1 + 2 UX1X2 (-P1/P2) + UX2X2 (-P1/P2)
2
 ]                             

          
ix.  The "sign" of this derivative determines whether Al's demand curve slopes down

or not.   The "sign" can be determined by carefully attempting to determine
whether each of the partial derivatives in the expression is positive or negative.

a. From the original characterization of U we know that all of the first partial derivatives are
positive and all of the second derivatives are negative (why?). 

b. If we also assume that all of the cross partials are positive,  Al's demand curve is

downward sloping, X1* P1< 0.
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