I. Positive and Normative Theories of Taxation

A. The positive and normative theories of taxation parallel those for expenditures.

B. With respect to positive theories:
 i. All taxes are consequences of choices of one kind or another, and those choices can be modeled.
 ii. For the most part, taxes are imposed as a method of generating revenue, although some taxes (Pigovian taxes) are assessed to change incentives at the margin.
 iii. Positive theories of taxation attempt to model the choice of tax systems (which are often quasi-constitutional choices) and tax rates within a given system of taxation.
 iv. Many of these choices will be affected by the effects of particular taxes, and so two levels of positive analysis are necessary:
 a. The direct impact of a tax has to be assessed, which includes the revenues generated in the short and long run, and also relevant economic and political affects of the tax of interest.
 b. The relevant economic and political effects varies with the institutional setting in which the tax decisions are made. Which effects are taken account of and their relative importance (salience) varies with the institutionally induced aspects of policymaker preferences.
 c. Non-pragmatic aspects of taxation are also relevant for positive analysis insofar as policymakers are directly or indirectly (e.g. through voter preferences) influenced by such preferences.

C. With respect to normative theories:
 i. Taxes can be ranked in various ways, according to the normative and pragmatic objectives of the person conducting the analysis.
 ii. From the perspective of a revenue maximizing dictator (leviathan), tax systems and tax rates can be ranked according to short, medium term, and long term revenues.
 iii. From the perspective of voters, tax systems can be ranked by their burdens of taxation (and their normative appeal), given the value of the public services desired.
 iv. Various philosophical perspectives can also be used to assess the relative merits of tax systems and tax rates. The most common of these are based on utilitarian and Paretian normative theories, although others involving equity (fairness), rights, and coercion are also occasionally used.

D. The mainstream normative theories used by economists (“welfare economics”) has produced three broadly accepted norms about tax systems, which are mostly, but not entirely, self-consistent:
 i. Tax systems should be broad based.
 • Such tax systems as income taxes, sales taxes, and value-added taxes (VATs) are broad based.
 ii. Tax systems should be neutral.
 • A neutral tax system does not have direct effects on relative prices.
 • Such tax systems are normally broad based, do not have loopholes (e.g. narrow exemptions), and treat all “base holders” similarly.
 iii. Tax systems should minimize the total burden of the tax system.
 • Tax burden is minimized through the choice of tax systems and through choice of tax rates.
 • For example, if one uses an excise tax system, one can choose rates to minimize the sum of the excess burdens across markets (Ramsay taxation [1927]).
 • Under a Ramsay tax system, the most inelastic markets will be taxed at the highest rates and the most elastic markets at the lowest rates. [Why? Show Geometrically and/or Mathematically]

E. In addition to these widely accepted norms (principles of optimal taxation), there are many other less widely-held normative conclusions:
 i. Utilitarians (which include most economists) argue that taxes should be allocated in a manner that maximizes a social welfare function (often of the Bentham variety).
 a. Utilitarian systems will generally be progressive.
 • If there is diminishing marginal utility of income, equal marginal sacrifice of utility will require larger tax payments by relatively wealthy persons.
 • This is sometimes referred to as taxation according to “ability to pay.”
 b. Sophisticated utilitarian analysis takes account of incentive effects of taxation in the long run, whereas “simple-minded” analysis does not.
Utilitarian normative theories of taxation are so widely used that "Optimal Tax Theory" can be said to be **broadly utilitarian**.

(There are, however, other less widely used normative theories of taxation.)

ii. Contractarians argue that an ideal tax system is one that everyone within a given society is willing to accept. Determining the ideal tax system in this sense normally requires analyzing the entire fiscal system (expenditures and taxation) simultaneously.

a. As an analytical device contractarians often use the "veil of ignorance" or the "veil of uncertainty."

b. Rawls, for example, argues that such a fiscal system will maximize the welfare of the least advantaged, because of fairly extreme risk aversion on the part of the members of society who will make the decision.

c. Buchanan, on the other hand, suggests that one should take the status quo system as given and negotiate improvements in the fiscal system. These negotiations will necessarily take place from behind a "veil of uncertainty" because future events are so difficult to forecast.

d. In both cases, uncertainty is presumed to make agreements easier to negotiate.

iii. Perhaps surprisingly, given the differences in approach, the conclusions of utilitarian and contractarian analysis are fairly similar.

a. They often support the three principles mentioned above.

b. Many distributional conclusions are also similar (with the "appropriate" assumptions about weights in social welfare functions and risk aversion among taxpayer-voters).

c. There are, however, many points of contention.

d. Buchanan, for example, argues contractarian theory is in principle operational.

e. A Pareto superior move will have essentially unanimous support, essentially by definition (although there may be strategic reasons for voter-taxpayers to lie about whether one is made better or worse off by a given reform).

 • The preference revelation problem is also faced by utilitarians.

 • The demand revealing tax (Clarke tax) is said to induce people to reveal their true valuations (Tideman and Tullock 1976).

iv. Other theorists use national income accounts to approximate average welfare and argue that taxes should be allocated in a manner that maximizes the long run growth of per capita national income.

a. (Maximizing median or total income are also occasionally mentioned.)

b. Such persons often favor consumption taxes in order to encourage saving and investment.

c. The effects of a consumption tax on investment can be illustrated with indifference curves and budget constraints, but the intuition behind the effect is based on simple supply and demand analysis.

 • If the price of saving falls relative to consumption, individuals will consume less and save more. And if savings increase, capital will be more rapidly accumulated, which leads to higher income levels and growth rates.

 • A consumption tax is thus not neutral.

 • [However, indifference curve analysis demonstrates that consumption taxes are more neutral than their proponents believe. Show this.]

v. There are also a variety of normative principles of fairness, horizontal and vertical equity, that are often mentioned in discussions of tax systems and tax rates.

a. A tax system is said to exhibits **horizontal equity**, if all persons holding a given level of the taxable base are treated in the same manner.

 • See, for example, Atkinson (1979) or Musgrave (1990).

b. A tax system is said to exhibit vertical equity, if all persons, regardless of their holding of the taxable base, are treated equally.

 • See for example McDaniel and Repetti (1992) or Mooney and Jan (1997).

c. Buchanan and Congleton (1998) argue that political stability and efficiency (within democracies) is enhanced when all persons are treated equally on both the expenditure and taxation side.

vi. There are also rights and liberty based theories of taxation--a proper tax has been adopted through proper procedures, respects existing rights, and is implemented in a relatively non-coercive manner.

• Note that Buchanan’s approach implies that normative questions can be answered empirically—if one accepts a particular class of normative theories.
Moreover, tax systems and tax rates can be assessed by their political
effects. Some taxes may produce “better” political decisions than others.

a. For example, some systems are less transparent or more complex than
others, and so are more likely to mislead consumer-voters about the
marginal cost of government programs.

• See, for example, Wagner (1976).

b. In addition, some tax systems are easier to administer and/or less subject
to corruption than others.

c. Such tax systems may be less than optimal under economic norms, but
may improve the quality of political decisionmaking sufficiently (reduce
voter mistakes or regrets) to offset their economic disadvantages.

F. The rest of today’s lecture will explore in more depth and rigor a subset of
the above normative theories of taxation.

G. Useful definitions for characterizing and discussing tax and/or fiscal
Systems:

i. A **progressive tax** is a tax whose average burden increases as the taxable
base owned by an individual increases. [Such taxes often have marginal tax
rates that increase with the base (increase with income), although not all
progressive taxes have this property. Most income tax systems in
industrialized countries are somewhat progressive.]

ii. A **proportional tax** is a tax whose average tax burden does not change with
income. (Such taxes normally have a constant marginal tax rate, as true of
most sales taxes and some income taxes. A flat (proportional) tax on
income has the form: \(T = tY \).)

iii. A **regressive tax** is a tax whose average tax burden falls with income. Such
taxes often have declining marginal tax rates with ownership of the taxable
base, however, not all regressive taxes have this property. An example of a
regressive tax in the US is the social security tax—which has a cap on taxable
income.

iv. [Instead of tax base, many analysts use income, which allows them to think
in terms of “ability to pay” and apply utilitarian “fairness” norms to tax
systems.]

v. **Definitions and Relationships:**

a. The **tax base**, \(B \), is that which is taxed. (taxable income, sales of final
goods and services, profits, property, gasoline, etc.)

b. The **average tax rate** of a particular tax often varies with an individual's
holding of the taxable base. If an individual pays tax \(T_i \) on a holding of
\(B_i \), his average tax rate is \(T_i/B_i \). (If \(T_i = $50 \) and \(B_i = 200 \), the average
tax rate for this tax is \(50/200 = 0.25 \) or 25%.)

c. The **marginal tax rate** of a particular tax is the change in taxes owed for
a one unit increase in holdings of the taxable base, \(\Delta T/\Delta B \). (So, if a tax
payer earning 50,000/year pays a tax of 10,000 and a taxpayer earning
50001 pays a tax of 10,000.50, his or marginal tax rate is 0.50/1 = 50%.
Fifty percent of each additional dollar earned is taken from the "last"
dollar of income earned by a taxpayer earning 50,000/year.)

d. In a **diagram of tax** schedules. If MTR is above ATR, then that ATR
curve will be rising (the marginal tax rate will be pulling the average up).
If MTR is below ATR, then the ATR curve will be falling (the marginal
tax rate will be pulling the average down). If the MTR = ATR, the ATR
will be neither rising nor falling.

e. Since individual decisions are determined by marginal cost and marginal
benefits at various quantities, it is the marginal tax rate rather than the
average tax that affects tax payer behavior.

f. (Thus, one argument in favor of proportional, or indeed, regressive taxes,
is that they may have smaller effects on economic activities than a
revenue equivalent progressive tax.)
vi. (Peckman's estimates of the effective average and marginal tax rates faced by a typical American tax payer, often look a bit like this odd tax schedule.)
 a. (As an exercise try to determine what the marginal tax schedule that corresponds to this average tax schedule looks like.)
 b. (Explain briefly why Peckman finds regressive ranges of taxation at both the highest and lowest ranges of income.)

II. The Importance of Marginal Tax Rates
A. The supply and demand diagrams of lecture 2 provide very useful ways to illustrate the burden of an excise tax, tariff, or other tax that can be represented in more or less “flat” per unit terms.
B. However, they are less useful for examining the impact of more complex taxes such as a progressive income tax.
 i. The taxes examined in the diagrams all had a constant tax rate, which implied that their average and marginal tax rates were essentially the same.
 ii. In many cases, however, the marginal and average tax rates will differ, in which case it is the marginal tax rate that is most important for predicting the impact of the tax on persons and markets.
 iii. In such cases, one gains more insight into the effects of a tax by using indifference curve analysis or a bit of mathematics.
C. Consider the following decision setting in which Al can work to earn money for goods available only in markets or engage in leisure.
 i. To simplify, assume that their H hours a day that can be worked and that Al is free to work as much or as little as she or he wants to.
 ii. Also assume that work produces neither pleasure nor pain, but is simply a means of obtaining the desired market basket of consumption goods, C.
 iii. Leisure, L, is assumed to be a good subject to diminishing marginal returns as usual.
 • Hours worked are denoted W and the wage rate is w.
 • So, income is Y=wW.
 • The income tax schedule is T = t(wW) or T =t(w(H-L)) with T_Y > 0 .
 • (Assume for convenience, that the entire burden of the tax is borne by Al.)

 a. Given all this, we can write down the optimization problem that characterizes Al’s labor-leisure choice:
 • \[U = u(L, C) \]
 • \[\text{with } C = wW - T \text{ or } C = w(H-L) - t(w(H-L)) \]

 b. Both leisure and consumption are ordinary goods subject to diminishing marginal utility and have positive or zero cross-partials.
 • \[U_L > 0 \text{, } U_C > 0 \text{, } U_{LL} < 0 \text{ and } U_{CC} < 0 \text{ with } U_{CL} > 0 \]

 c. To simplify the math a bit, note that one can substitute the budget constraint for C into the utility function.
 • This allows Al's utility can be written either entirely in terms of leisure (L)
 • or entirely in terms of hours worked W, if we also substitute for L = H - W.

d. In the latter case: \[U = u(H-W), wW - t(wW) \]
e. Differentiating with respect to W (the only control variable available to Al in this representation), we obtain the first order condition that characterizes Al's optimal work day:
 • \[W^* \text{ satisfies: } U_L (\cdot - 1) + U_C (w - T_Y w) = 0 \]

 • or \[w(1- T_Y) U_C = U_L + \]

 • \[w(1- T_Y) U_C \] is the marginal benefit of an hour worked (in utility terms) net of taxes
 • \[U_L \] is the marginal opportunity cost of working (also in utility terms)

 • A utility maximizing person will work at the point where his marginal increase in income \[w(1- T_Y) \] times the marginal utility of income equals the marginal utility of leisure.

 iv. Note that it is the marginal tax rate, \(T_Y \), rather than the average or total tax rate, that affects Al's decision.
 • (In cases in which Al bears less than the full burden of the tax, it will be his or her effective marginal tax rate that affects behavior.)
III. A Review of the Geometric and Algebraic Foundations of the Principles of Broad-Based Neutral Taxation

A. Recall that the behavioral affects of an excise tax can be analyzed with indifference curves and budget constraints, as we saw in lecture 2.

B. We can use some of the diagrams from that lecture to illustrate the geometric case for neutral-broad-based taxation.
 i. Suppose that there are two goods, 1 and 2, both of which the consumer normally uses.
 ii. The effect of an excise tax on good 1 is to increase the price of the taxed good from \(P^* \) to \(P_c \).
 a. [Show this using supply and demand or algebraic examples].
 b. This increase in price affects the location of each consumer's budget set.
 c. It rotates the budget constraint from the untaxed end of the budget constraint and generates a new budget constraint that lies inside the original one at all points where the consumer purchases positive quantities of the taxed good.

iii. Suppose that "A" is the original bundle consumed by this consumer.
 a. In this drawing the tax has increased price of good 1 from \(P_1 \) to \(P_1' \) (this price effect is taken from a supply and demand diagram)
 • In the case drawn, the new higher price causes the consumer to purchase bundle \(B \) instead of \(A \). (Indeed, \(A \) is no longer feasible.)
 • Note that had the same revenue been generated from a lump sum tax equal to \(Q_1'P_1' \)
 b. Such a tax, would have allowed the individual to purchase a bundle like \(C \) which is on a higher indifference curve (not drawn) than bundle \(B \).
 • This loss in utility (from being on a lower indifference curve) is another measure of the excess burden of a non-neutral tax on consumers.
 c. Again, much of the excess burden (deadweight loss) is a consequence of reduction in purchases of the taxed good, particularly that part which was generated by the "relative price" effect of the excise tax.
 • You learned in micro economics that every price increase has both a (relative price) substitution effect and a wealth effect on purchases of the good whose price has increased.
 • Similarly every excise tax that affects consumer prices has both a (relative price) substitution effect and an income effect on purchases of the good whose price has increased.

C. The behavioral effect of a general tax and a lump sum tax tends to be smaller than that of an excise tax, because these taxes have only an income (wealth) effect.
 i. A revenue neutral lump sum tax, a (neutral) general sales tax, and an income tax all shift each consumer's budget constraint towards the origin, but these taxes do not affect the slope of the consumer's budget constraint.
 • Consequently, general taxes and lump sum taxes tend to have a smaller effect on behavior than excise taxes that raise the same amount of revenue. (There is no "substitution effect.")
 ii. To see this, calculate the slope of the budget lines for lump sum, sales and income taxes.
 a. Recall that slope is "rise over run."
 b. In the case without taxes, the slope of the budget line is \(-\frac{W/P2}{W/P1}\), which simplifies to \(-\frac{P1}{P2}\).
c. In the case of a lump sum tax, the endpoints of the new budget line are \((W-T)/P_1\) and \((W-T)/P_2\). The slope of the new budget constraint is
\[-[(W-T)/P_2]/[(W-T)/P_1]\] which equals
\[-P_1/P_2\]. \(\text{Show this algebraically.}\)

iii. In the case of an income tax, where \(W\) is treated as income, the after tax income is \((1-t)W\), so the endpoints of the new budget line are \(((1-t)W)/P_1\) and \(((1-t)W)/P_2\).

\[\text{The slope of the new budget line is:}\]
\[-[(1-t)W]/P_1]/[((1-t)W)/P_2\] = - \(P_1/P_2\).

iv. In the case of a general sales tax the new after tax prices will be approximately \((1+t)P_1\) and \((1+t)P_2\).

\[\text{What assumptions about supply and demand are sufficient for this to be exactly true?}\]

\[\text{The slope of the new budget line will be}\]
\[-(W)/(1+t)P_2]/[(1-t)W]/(1+t)P_1\], which again can be shown to equal - \(P_1/P_2\).

a. All three of these taxes are "neutral" with respect to the choice illustrated in our diagram.

v. None of these taxes change the relative prices of goods 1 and 2.

\[\text{The slope of the budget line remains -P_1/P_2 in each case.}\]

\[\text{This is the geometry behind broad-based neutral taxation.}\]

D. The geometric case is fairly week, insofar as the excess burden of non-neutral taxes is geometrically pretty small!

i. The neutral tax system required to produce a Pareto superior move from a non-neutral tax requires a lot information. \[\text{why?}\]

\[\text{A Pareto reform of an excise tax system is very likely to violate widely held norms of horizontal equity.}\ \[\text{why?}\]

ii. It also bears noting that in some cases, the purposes of some taxes it to \text{change behavior}, as with Pigovian taxation.

\[\text{In such cases, excise taxes and other "marginal" taxes will be more effective at altering behavior than lump sum or general taxes.}\]

iii. \[\text{It also bears noting, however, that no tax can be completely neutral, because taxes can affect locational choices of firms and consumers.}\]

IV. Externalities, Pigovian Taxation, and the Double Dividend

A. DEF: An externality occurs whenever a decision made by an individual or group has effects on others not involved in the decision. That is to say, an externality exists whenever some activity imposes spillover costs or benefits on other persons not directly involved in the activity being analyzed.

i. Generally, any activity that imposes external losses (costs) on third parties at "the margin" will be carried out at levels greater than those which maximizes the social net advantage from the activity. This follows because the people who decide the level of the activity that gets carried out tend to focus only on their own costs and benefits.

ii. Note that this is a positive prediction about behavior--that spill over costs and benefits are ignored by those controlling the activity.

iii. \[\text{For example, within environmental economics, polluters ignore spillover costs, while pollution controllers ignore spillover benefits from cleaning up.}\]

B. The existence of externality "problems" follows from the normative framework of welfare economics given these (positive) predictions about firms and consumers.

i. The problem from the point of view of welfare economics is not externalities themselves, but rather that the wrong level (too much or too little) of the externality generating activity gets produced to maximize social net benefits.

\[\text{a. Consider, for example water pollution.}\]

\[\text{b. Water pollution imposes costs on other users of a river or lake, and tends to be over produced, as we will (see diagrams below).}\]

\[\text{c. However, the optimal amount of pollution is not generally zero! The "optimal" amount of water pollution sets the marginal cost of cleaning up the pollution equal to the social marginal benefits of engaging in the polluting activity. (See the diagrams below.)}\]

\[\text{d. In nearly every case in which an environmental problem is claimed to exist-- the underlying "economic problem" is an externality problem.}\]

ii. It bears noting that not all externality problems involve external costs.

\[\text{a. Some externalities generate external benefits.}\]

\[\text{b. Consider, for example, the activity of planting flowers along sidewalks and highways.}\]
c. Nearly everyone passing by enjoys them, but the "gardeners" will take account of only their own marginal benefits and costs when deciding how many flowers to plant. Activities that generate positive externalities tend to be under provided in equilibrium.

d. The problem with "public goods" is that they tend to be under produced, relative to that which maximizes social net benefits (or which is Pareto efficient).

iii. Some activities generate external benefits for some people, but external costs for others.

a. For example, some people might be allergic to the flowers planted under "b."

b. When one turns on a "blinker" while driving, most people are better off because they are now better informed about your intended path, but others may feel worse off because they now know that lines at the next stop light are longer.

C. The geometry of externalities and externality problems is straightforward.

i. In a supply and demand (market) diagram, we introduce a new curve that represents the external marginal costs (or marginal benefits) of the activity of interest.

- The predicted market outcome (Q*) is not affected by the existence of the new marginal external cost curve, because both firms and consumers are assumed to ignore the externality generated.
- (Note that this positive prediction plays an important role in the entire exercise and is an assumption that can be tested.)

ii. To find out whether an externality generating activity or output is over or under supplied, we find the social marginal benefit and marginal cost curves, and use them to characterize the social net benefit maximizing activity level (output, Q**).

a. To find the SMB and SMC curves, recall that the Demand curve is approximately the same as the marginal benefits received by consumers and the supply curve is approximately the industry's marginal cost. To these we add the external marginal benefits and/or external marginal costs to find the social marginal benefit and social marginal costs curves--now taking account of the spillovers.

b. Because an externality generating activity generates benefits or costs for a wide range of people simultaneously, the social marginal benefit and marginal cost curves for such activities are "vertical" sums of the relevant consumer, firm, and spillover MB and MC curves.

D. The level of the activity that maximizes social net benefits is generally found where the social marginal benefit of the activity equals its social marginal cost curve. If Q* does not equal Q**, there is an externality problem.

i. EXAMPLE: In Figure 0, the market supply and demand cross at Q*, but the SMB and SMC curves (here D and S+MCx) cross at Q**. Since Q* is not equal to Q** there is an externality problem.

Over Supply of an Activity with External Costs

\[
\begin{array}{c}
\text{D} \\
S+MCx \\
S \\
MCx
\end{array}
\]

\[
\begin{array}{c}
Q** \\
Q* \\
Q
\end{array}
\]

a. The inefficiency (market failure) conclusion of this diagram can be reached using several normative theories.

- For example, the activity level chosen fails to maximize social net benefits, then there is an externality (or public good) problem.
- The activity fails to realize all potential gains to trade and so there are Pareto superior moves possible.
- From behind a veil of ignorance, the community would (or may) agree to implement an institution that generates Q** rather than Q*.

ii. Externality analysis can also be undertaken at the level of individuals.

a. One can represent the benefits and costs associated with an externality generating activity using individual marginal benefit curves.

- To find the private supply, we assume that the "high demander provides" the quantity that maximizes his or her own consumer surplus.
• The social marginal benefit curve is the (vertical) sum of the individual MB curves.

b. In this case, external benefits imply that the activity is under-supplied relative to the Pareto efficient output.

iii. Note that in Figure 1, Al’s preferred output level, Q’, (the one that maximizes her own net benefits) there are spillover benefits at the margin. Al’s purchase and use of this good makes Bob better off-

a. In this case, there are external benefits, and the social net benefit maximizing level of the activity is higher than that provided.

b. [This is the typical case for pure public goods.]

iv. It bears noting, however, that the mere presence of an externality does not imply that the outcome of private (independent) activity is Pareto suboptimal.

• Some externalities have only “inframarginal” effects.

• [Draw a few cases in which there are externalities but marginal external costs and benefits are zero at Q*.]

• This idea was first worked out in Buchanan and Stubblebine (1962).

E. Pigovian Taxes: Internalizing Externalities

i. A Pigovian tax attempts to change incentives at the margin by imposing a tax (or subsidy) on the activity that generates the externality.

ii. Notice that if the externality producer is subject to a tax equal to the marginal external cost (benefit) at the Pareto efficient level, the externality producer will now choose to produce the Pareto efficient output/effluent levels.

a. Such a tax (or subsidy) is said to internalize the externality, because it makes the externality producer bear the full cost of his actions (at Q**).

b. (In principle, Pigovian tax schedules can have a variety of shapes, but for the purposes of this class we will assume that they are all "flat taxes" that assess the same tax on every unit of the product (or emission) produced.

F. Illustration of the Pigovian Tax

i. Without a Pigovian tax, there are unrealized gains to trade (see triangle UGT) at Q*, between the firm and those affected by the externality.

a. The external cost at Q** is the vertical distance from MC to the MC + MCx curve.

b. This distance also represents the Pigovian the tax that should be put on production to internalize the externality. It is labeled "t."
ii. If a Pigovian tax of t dollars per unit is imposed on the firm's output (or emissions) the firm will now face a marginal cost for production equal to $MC + t$.

a. Given this new MC curve (which includes the tax that "internalizes" the externality) firms in the industry will change their individual supply decisions and the industry will now produce an output of Q^{**}, the Pareto Efficient level.

b. Pigovian taxes induce firms to independently internalize the externality.

iii. Among solutions to externality problems, Pigovian taxes tend to be relatively inexpensive to administer and relatively inobstrusive.

a. The tax burden required to achieve the desired level of the externality generating activity can be very large, which tends to make both consumers and firms in the taxed industry worse off.

b. This tends to make Pigovian taxes politically unpopular.

iv. Imposing a Pigovian tax also tends to be economically difficult, because it requires that the marginal external damages be estimated.

a. This may be possible at Q^*, the output actually produced in the unregulated setting.

b. However this will be more difficult to do at Q^{**} because Q^{**} is not observed and has to be estimated using estimates of SMC and SMB.

G. Pigovian taxes may yield substantial revenues although this is not their main purpose. Their main purpose is to change behavior.

i. Nonetheless, the geometric examples imply that Pigovian taxes have a double dividend.

a. Pigovian taxes solve externalities and produce revenue.

b. Moreover, Pigovian taxes do not generate a (direct) deadweight loss in the manner of an ordinary excise tax!

ii. Pigovian taxes have no direct deadweight losses associated with them.

a. Social net benefits increase, rather than decrease, when a Pigovian tax is imposed.

b. This implies that substituting Pigovian taxes for ordinary taxes tends to both solve externality problems and reduce deadweight losses from taxation.

c. The latter is sometimes referred to as the double dividend.

• See Goulder (1995) for a useful overview of the literature on the double dividend. See also Blovenberg (1999), and Parry and Bento (2000)

• The most important of Pigovian taxes under discussion during the past decade or two is the carbon tax, which would generate levels of revenue similar or greater than that of the Corporate Income tax.

• Proposals to fund Swiss social security with a carbon tax, instead of an income or wages tax, was voted on through a national referendum several years ago. (It lost.)

• Pigovian Subsidies are essentially similar to that of the Pigovian tax, except in this case the externality generating activity is under produced, and the subsidy attempts to encourage additional production.

a. “Internalizing” positive externalities requires producers to take account of unnoticed benefits falling on others outside the decision of interest.

b. Pigovian subsidies, like Pigovian taxes, do not generate a direct deadweight loss in the manner of “ordinary” targeted subsidies.

(Proponents of subsidies will, thus, often argue that the subsidy of interest solves an important externality problem.)

V. Another normative theory of taxation was proposed by Frank Ramsay in 1927. He argued that a system of excise taxes should attempt to minimize the excess burden of the tax system.

i. A Ramsay tax system imposes higher taxes on markets with relatively inelastic supply and demand curves, and relatively lower taxes on markets with relatively large price sensitivities.

ii. The Ramsay tax can be analyzed using the diagrams worked out in previous lectures that show excess tax burdens.

a. Note that if markets with perfectly inelastic demand or supply curves exist, government services can be financed without any deadweight loss at all, if taxes on such goods can generate sufficient revenues.

b. (Remember that taxes on products with inelastic supply or demand curves generate no deadweight losses.)

iii. A special case of such a tax is a tax on land--which is sometimes called a Georgist tax after Henry George (1885) who proposed financing government entirely with land taxes.

a. The supply of land, after all, is perfectly inelastic (ignoring dikes and dumps).
b. Analyze the limitations, if any, of a Georgist land tax. Where does the value of a piece of land come from? Would there be allocative affects across different types of land?

c. Would a Georgist land tax be neutral even if it is a Ramsay tax?)

- See Tideman (1982)
- Given the possibility of international emigration, can their actually be a tax that has no dead weight loss? Discuss.

A. Other normative principles of taxation imply that one cannot determine the proper division of the tax burden without thinking about the services that will be provided.

i. For example, Lindalh argues in favor of a benefit tax, that is a tax that imposes the greatest burden on those who receive the most valued services should pay the highest taxes.

ii. Under an ideal Lindalh tax system, each person's marginal tax rate is set equal to the marginal benefits she or he receives from government services.

- Notice that such a tax system assures that the result is both Pareto efficient and politically stable in the sense that given the tax system, there is unanimous agreement about the optimal service level.

- (Illustration)

iii. James Buchanan (who won a Nobel Prize in economics while a professor at GMU, partly for his contributions to public finance) tends to agree with Lindalh.

a. Buchanan argues that proper accounts of tax burden—should focus on net tax burden—that is, they should take account of the services financed by taxes as well as the taxes paid.

b. For example, if a person receives an especially valuable service from the government, it is possible that his or her "true" net tax burden is negative. Others who receive no services of value, might have positive net tax burdens.

- Ideally, all citizens would bear "negative" tax burdens in the sense that each person should receive services that are considered to be more valuable than the taxes paid.

- Buchanan points out that most Western governments are very productive in the sense that a good deal of the wealth produced in a given nation state is affected by property rights, civil law, and public services—as well the taxes used to finance them.

A. Other normative principles of taxation come are rooted in shared cultural norms—often dealing with fairness (or equity).

i. Some argue that fairness requires all persons to pay be treated the same way under a tax system.

- This notion of fairness tends to imply a flat tax.

- Examples include a proportional tax on income as developed in Buchanan and Congleton (1998, ch. 8).

ii. Others argue that taxation of persons should be based on their "ability to pay."

a. This notion of fairness tends to imply progressive income taxes.

b. For example, a "fair tax" might be one that caused all taxpayers should all sacrifice approximately the same "utility" (rather than net benefits) when they pay their taxes.

- Since the marginal utility of money tends to be smaller for rich persons than poor persons, more money would be collected from rich persons than from poor persons.

- This notion of fairness often plays an important role in policy debates over taxation in the US.

- "Progressivity" if often argued to be desirable, while "regressivity" is often argued to be undesirable—although these ideas are not universally accepted among normative tax theorists.

c. Perhaps the most extreme of the rational choice-based fairness analyses is that of John Rawls (1971, *A Theory of Justice*), who argues that fiscal packages should be designed so that the welfare of the least well off person in society is maximized.

- Suppose that you knew that social system I produced a distribution of income (100, 0, 0), social system II produced a distribution of income (50, 25, 25), social system III produced a distribution of income (40, 35, 25) and system IV produced a distribution of income (35, 35, 30).

- A Rawlsian might ask such questions as: if you did not know whether you were A, B, C, which of these systems would you prefer?

- How about between: (100, 5, 5), (40, 35, 20), and (25, 25, 25)?